Log in

Electrochemical Sensing of Dopamine Using Onion-like Carbons and Their Carbon Nanofiber Composites

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

This work describes the electrochemical detection of dopamine in samples (pure raw materials as well as pharmaceutical formulation) using onion-like carbon (OLC) and its carbon nanofiber composites (OLC-CNF). The OLC-CNF and precursor materials (polyacrylonitrile (PAN) fiber and OLC-PAN) were synthesized using electrospinning process. The morphologies of the samples were obtained using scanning electron microscopy (SEM) while surface area and porosity were determined using the Brunauer–Emmett–Teller (BET) analysis. OLC gave the best surface area (279 m2 g−1) and highest pore volume (1.2 cm3 g−1). To determine electrochemical sensing properties, the materials were drop-cast on the glassy carbn electrode (GCE). The electron transfer properties decrease as follows: OLC > OLC-PAN > OLC-CNF > PAN, suggesting that OLC is the most conductive materials. The modified GCE were used as sensors for the dopamine using electrochemical techniques such as cyclic voltammetry (CV), square wave voltammetry (SWV), and electrochemical impedance spectroscopy (EIS). OLC and OLC-CNF gave comparable electrocatalytic activities in terms of sensitivity and limit of detection (OLC 1.23 μM and sensitivity of 0.74 μA/μM, and OLC-CNF 1.42 μM, 0.31 μA/μM). The high performance of OLC is attributed to its advantageous nanoparticulate nature and high conductivity. Both sensors (OLC and OLC-CNF) could be reliably used in the assay of dopamine raw material and its pharmaceutical formulation, dopamine HCl injection (Rotexmedica®). One of the key fndings here is that the incorporation of the CNF into the OLC does not significantly impact on its inherent tensile strain that defines its electrochemical performance.

Onion-like carbon (OLC) and its carbon nanofiber (CNF) composites gave comparable electrocatalysis toward sensitive and selective detection of dopamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W. Zhang, R. Yuan, Y.Q. Chai, Y. Zhang, S.H. Chen, A simple strategy based on lanthanum–multiwalled carbon nanotube nanocomposites for simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite. Sens Actuators B Chem 166, 601–607 (2012)

    Article  CAS  Google Scholar 

  2. G. Xu, S. Liang, M. Zhang, J. Fan, J. Feng, X. Yu, Studies on the electrochemical and dopamine sensing properties of AgNP-modified carboxylated cellulose nanocrystal-doped poly(3,4-ethylenedioxythiophene). Ionics 23(11), 3211–3218 (2017)

    Article  CAS  Google Scholar 

  3. K. Jackowska, P. Krysinski, New trends in the electrochemical sensing of dopamine. Anal. Bioanal. Chem. 405(11), 3753–3771 (2013)

    Article  CAS  PubMed  Google Scholar 

  4. M. Perry, Q. Li, R.T. Kennedy, Review of recent advances in analytical techniques for the determination of neurotransmitters. Anal. Chim. Acta 653(1), 1–22 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. K.M. Promod, R. Ankush, P.S. Netra, K.K. Gopal, Detection of potential microbial antigens by immuno-PCR (PCR-amplified immunoassay). J. Med. Microbiol. 63, 627–641 (2014)

    Article  CAS  Google Scholar 

  6. J.Y. Park, S.W. Myung, I.S. Kim, D.K. Choi, S.J. Kwon, S.H. Yoon, Simultaneous measurement of serotonin, dopamine and their metabolites in mouse brain extracts by high-performance liquid chromatography with mass spectrometry following derivatization with ethyl chloroformate. Biol. Pharm. Bull. 36(2), 252–258 (2013)

    Article  CAS  PubMed  Google Scholar 

  7. T. Jaya, K. Razia, V. Divya, A validated HPLC-UV method and optimization of sample preparation technique for norepinephrine and serotonin in mouse brain. Pharm. Biol. 53(10), 1539–1544 (2015)

    Article  CAS  Google Scholar 

  8. C.G. Qian, S. Zhu, P.J. Feng, Y.L. Chen, J.C. Yu, X. Tang, Y. Liu, Q.D. Shen, Conjugated polymer nanoparticles for fluorescence imaging and sensing of neurotransmitter dopamine in living cells and the brains of zebrafish larvae. ACS Appl. Mater. Interfaces 7(33), 18581–18589 (2015)

    Article  CAS  PubMed  Google Scholar 

  9. J. Njagi, M.M. Chernov, J.C. Leiter, S. Andereescu, Amperometric detection of dopamine in vivo with an enzyme based carbon fiber microbiosensor. Anal. Chem. 82(3), 989–996 (2010)

    Article  CAS  PubMed  Google Scholar 

  10. Y.C. Li, Y. Liu, J. Liu, H. Tang, C. Cao, D.S. Zhao, Y. Ding, Molecularly imprinted polymer decorated nanoporous gold for highly selective and sensitive electrochemical sensors. Sci. Rep. 5(1), 7699–7706 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. S.G. Ge, M. Yan, J.J. Lu, M. Zhang, F. Yu, J.H. Yu, X.R. Song, S.L. Yu, Electrochemical biosensor based on graphene oxide-Au nanoclusters composites for L-cysteine analysis. Biosens. Bioelectron. 31(1), 49–54 (2012)

    Article  CAS  PubMed  Google Scholar 

  12. Y. Oztekin, M. Tok, E. Bilici, L. Mikoliunaite, Z. Yazicigil, A. Ramanaviciene, A. Ramanavicius, Electrochim. Acta 76, 201–207 (2012)

    Article  CAS  Google Scholar 

  13. A. Mohadesi, M.A. Karimi, M. Pourfarsi, A new negative charged self-assembled monolayer for selective electroanalytical determination of dopamine in the presence of ascorbic acid. Int. J. Electrochem. Sci. 6, 309–316 (2011) (2016)

    CAS  Google Scholar 

  14. O.O. Fashedemi, K.I. Ozoemena, A facile approach to the synthesis of hydrophobic iron tetrasulfophthalocyanine (FeTSPc) nano-aggregates on multi-walled carbon nanotubes: A potential electrocatalyst for the detection of dopamine. Sensors Actuators B Chem. 160(1), 7–14 (2011)

    Article  CAS  Google Scholar 

  15. G.T. Gnahore, T. Velasco-Torrijos, J. Colleran, The selective electrochemical detection of dopamine using a sulfated β-cyclodextrin carbon paste electrode. Electrocatalysis 8(5), 459–471 (2017)

    Article  CAS  Google Scholar 

  16. W.T. Wang, G.Y. Xu, X.T. Cui, G. Sheng, X.L. Luo, Enhanced catalytic and dopamine sensing properties of electrochemically re-duced conducting polymer nanocomposite doped with pure graphene oxide. Biosens. Bioelectron. 58, 153–156 (2014)

    Article  CAS  PubMed  Google Scholar 

  17. G.Y. Xu, W.T. Wang, B.B. Li, Z.L. Luo, X.L. Luo, A dopamine sensor based on a carbon paste electrode modified with DNAdoped poly(3,4-ethylene-dioxythiophene). Microchim. Acta 182(3-4), 679–685 (2015)

    Article  CAS  Google Scholar 

  18. Y.-J. Ko, J.-M. Cho, I. Kim, D.S. Jeong, K.-S. Lee, J.-K. Park, Y.-J. Baik, H.-J. Choi, S.-C. Lee, W.-S. Lee, Inherently-forced tensile strain in Nanodiamond-derived onion-like carbon: Consequences in defect-induced electrochemical activation. Sci. Rep. 6(1), 23913 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Y. Huang, Y.-E. Miao, S. Ji, W.W. Tjiu, T. Liu, Electrospun carbon nanofibers decorated with Ag−Pt bimetallic nanoparticles for selective detection of dopamine. ACS Appl. Mater. Interfaces 6, 12449–−12456 (2014)

    Article  CAS  PubMed  Google Scholar 

  20. M.M. Hantel, V. Presser, J.K. McDonough, G. Feng, P.T. Cummings, Y. Gogotsib, R. Kötz, In situ electrochemical dilatometry of onion-like carbon and carbon black. J. Electrochem. Soc. 159(11), A1897–A1903 (2012)

    Article  CAS  Google Scholar 

  21. K. Makgopa, P.M. Ejikeme, C.J. Jafta, K. Raju, M. Zeiger, V. Presser, K.I. Ozoemena, A high-rate aqueous symmetric pseudocapacitor based on highly graphitized onion like carbon/birnessite-type manganese oxide nanohybrids. J. Mater. Chem. A 3, 34803490 (2015)

    Article  CAS  Google Scholar 

  22. K. Bogdanov, A. Fedorov, V. Osipov, T. Enoki, K. Takai, T. Hayashi, V. Ermakov, S. Moshkalev, A. Baranov, Annealing-induced structural changes of carbon onions: High-resolution transmission electron microscopy and Raman studies. Carbon 73, 78–86 (2014)

    Article  CAS  Google Scholar 

  23. Y. Gao, Y.S. Zhou, M. Qian, X.N. He, J. Redepenning, P. Goodman, H.M. Li, L. Jiang, Y.F. Lu, Chemical activation of carbon nano-onions for high-rate supercapacitor electrodes. Carbon 51, 52–58 (2013)

    Article  CAS  Google Scholar 

  24. X. Mao, T.A. Hatton, G.C. Rutledge, A review of electrospun carbon fibers as electrode materials for energy storage. Curr. Org. Chem. 17(13), 1390–1401 (2013)

    Article  CAS  Google Scholar 

  25. A. Ejaz, Y. Joo, S. Jeon, Fabrication of 1,4-bis(aminomethyl)benzene and cobalt hydroxide @graphene oxide for selective detection of dopamine in the presence of ascorbic acid and serotonin. Sensors Actuators B Chem. 240, 297–307 (2017)

    Article  CAS  Google Scholar 

  26. G.P. Keeley, N. McEvoy, H. Nolan, S. Kumar, E. Rezvani, M. Holzinger, S. Cosniera, G.S. Duesberg, Simultaneous electrochemical determination of dopamine and paracetamol based on thin pyrolytic carbon films. Anal. Methods 4, 2048 (2012)

    Article  CAS  Google Scholar 

  27. Y.R. Kim, S. Bong, Y.J. Kang, Y. Yang, R.K. Mahajan, J.S. Kim, H. Kim, Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes. Biosens. Bioelectron. 25(10), 2366–2369 (2010)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Science and Technology (DST) and National Research Foundation (NRF). O.C. Ozoemena is grateful to the DST-NRF for the MTech degree “DST-NRF Innovation and Priority Research Areas scholarship.” We thank Dr. Nicholas Musyoka (CSIR, Pretoria) for assistance and access to their electrospinning facility.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Leshweni J. Shai or Kenneth I. Ozoemena.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozoemena, O.C., Shai, L.J., Maphumulo, T. et al. Electrochemical Sensing of Dopamine Using Onion-like Carbons and Their Carbon Nanofiber Composites. Electrocatalysis 10, 381–391 (2019). https://doi.org/10.1007/s12678-019-00520-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-019-00520-x

Keywords

Navigation