Log in

An amperometric sensitive dopamine biosensor based on novel copper oxide nanostructures

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

It is highly important to explore the influence of counter anions on the morphology in order to have a desired nanostructure with unique properties. Therefore, in this research work the influence of counter anions on the morphology of copper oxide (CuO) nanostructures is presented using copper chloride and copper acetate salts. A significant role of counter anions on the morphology of CuO nanostructures is observed. The hydrothermal method is used to carry out the synthesis of CuO nanomaterial. The prepared CuO nanostructures are characterized by scanning electron microscopy and X-ray diffraction techniques. The prepared CuO nanomaterial exhibits porous nature with thin nanowires and sponge like morphologies. The dopamine sensing application was carried for exploring the electrocatalytic properties of CuO nanostructures. The presented dopamine biosensor exhibited wide linear range for detection of dopamine from 5 to 40 µM with sensitivity of 12.8 µA mM−1 cm−2. The limit of detection and limit of quantification were estimated in order 0.11 and 0.38 µM respectively. The developed dopamine biosensor is highly sensitive, selective, stable and reproducible. The common interfering species such as glucose, ascorbic acid and uric acid showed negligible change in the current when same concentration of dopamine and these interfering species was used. The fabricated biosensor could be used for the determination of dopamine from real blood samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alkire RC, Kolb DM, Lipkowski J, Ross PN (2009) Advances in electrochemical science and engineering chemically modified electrodes, vol 11. Wiley-VCHVerlag GmbH & Co. KGaA, Weinheim (Chapter 1)

    Book  Google Scholar 

  • Chang HY, Kim DI, Park YC (2006) Electrochemically degraded dopamine film for the determination of dopamine. Electroanalysis 18(16):1578–1583

    Article  Google Scholar 

  • Chang J-L, Wei G-T, Zen J-M (2011) Screen-printed ionic liquid/preanodized carbon electrode: effective detection of dopamine in the presence of high concentration of ascorbic acid. Electrochem Commun 13(2):174–177

    Article  Google Scholar 

  • Chen Z-Z, Shi E-W, Zheng Y-Q, Li W-J, **ao B, Zhuang J-Y (2003) Growth of hex-pod-like Cu2O whisker under hydrothermal conditions. J Cryst Growth 249(1):294–300

    Article  Google Scholar 

  • Ciszewski A, Milczarek G (1999) Polyeugenol-modified platinum electrode for selective detection of dopamine in the presence of ascorbic acid. Anal chem 71(5):1055–1061

    Article  Google Scholar 

  • Heien ML, Khan AS, Ariansen JL, Cheer JF, Phillips PE, Wassum KM, Wightman RM (2005) Real-time measurement of dopamine fluctuations after cocaine in the brain of behaving rats. Proc Natl Acad Sci USA 102:10023–10028

    Article  Google Scholar 

  • Hsieh C-T, Chen J-M, Lin H-H, Shih H-C (2003a) Field emission from various CuO nanostructures. Appl Phys Lett 83(16):3383–3385

    Article  Google Scholar 

  • Hsieh C-T, Chen J-M, Lin H-H, Shih H-C (2003b) Synthesis of well-ordered CuO nanofibers by a self-catalytic growth mechanism. Appl Phys Lett 82(19):3316–3318

    Article  Google Scholar 

  • ** G, Zhang Y, Cheng W (2005) Poly (p-aminobenzene sulfonic acid)-modified glassy carbon electrode for simultaneous detection of dopamine and ascorbic acid. Sens Actuators B 107(2):528–534

    Article  Google Scholar 

  • Kim Y-S, Hwang I-S, Kim S-J, Lee C-Y, Lee J-H (2008) CuO nanowire gas sensors for air quality control in automotive cabin. Sens Actuators B 135(1):298–303

    Article  Google Scholar 

  • Kim J, Park J, Park K (2010) CuO hollow nanostructures catalyze [3 + 2] cycloaddition of azides with terminal alkynes. Chem Commun 46(3):439–441

    Article  Google Scholar 

  • Lai G-S, Zhang H-L, Han D-Y (2008) Electrocatalytic oxidation and voltammetric determination of dopamine at a Nafion/carbon-coated iron nanoparticles-chitosan composite film modified electrode. Microchim Acta 160(1–2):233–239

    Article  Google Scholar 

  • Li D, Leung Y, Djurišić A, Liu Z, **e M, Gao J, Chan W (2005) CuO nanostructures prepared by a chemical method. J Cryst Growth 282(1):105–111

    Article  Google Scholar 

  • Li Y, Liang J, Tao Z, Chen J (2008) CuO particles and plates: synthesis and gas-sensor application. Mater Res Bull 43(8):2380–2385

    Article  Google Scholar 

  • Li H, Wang Z, Chen L, Huang X (2009) Research on advanced materials for Li-ion batteries. Adv Mater 21(45):4593

    Article  Google Scholar 

  • Li S-J, Deng D-H, Shi Q, Liu S-R (2012) Electrochemical synthesis of a graphene sheet and gold nanoparticle-based nanocomposite, and its application to amperometric sensing of dopamine. Microchim Acta 177(3–4):325–331

    Article  Google Scholar 

  • Liu A (2008) Towards development of chemosensors and biosensors with metal-oxide-based nanowires or nanotubes. Biosens Bioelectron 24(2):167–177

    Article  Google Scholar 

  • Liu Q, Liu H, Liang Y, Xu Z, Yin G (2006) Large-scale synthesis of single-crystalline CuO nanoplatelets by a hydrothermal process. Mater Res Bull 41(4):697–702

    Article  Google Scholar 

  • Nezhad MH, Tashkhourian J, Khodaveisi J (2010) Sensitive spectrophotometric detection of dopamine, levodopa and adrenaline using surface plasmon resonance band of silver nanoparticles. JICS 7(2):S83–S91

    Article  Google Scholar 

  • Peaston RT, Weinkove C (2004) Measurement of catecholamines and their metabolites. Ann Clin Biochem 41(1):17–38

    Article  Google Scholar 

  • Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon J (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407(6803):496–499

    Article  Google Scholar 

  • Rao PS, Rujikarn N, JrJ Luber, Tyras D (1989) A specific sensitive HPLC method for determination of plasma dopamine. Chromatographia 28(5–6):307–310

    Article  Google Scholar 

  • Snowden ME, Unwin PR, Macpherson JV (2011) Single walled carbon nanotube channel flow electrode: hydrodynamic voltammetry at the nanomolar level. Electrochem Commun 13(2):186–189

    Article  Google Scholar 

  • Solanki PR, Kaushik A, Agrawal VV, Malhotra BD (2011) Nanostructured metal oxide-based biosensors. NPG Asia Materials 3(1):17–24

    Article  Google Scholar 

  • Tang X-L, Ling R, Sun L-N, Tian W-G, Cao M-H, Hu C-W (2006) A solvothermal route to Cu2O nanocubes and Cu nanoparticles. Chem Res Chin Univ 22(5):547–551

    Article  Google Scholar 

  • Teng F, Yao W, Zheng Y, Ma Y, Teng Y, Xu T, Liang S, Zhu Y (2008) Synthesis of flower-like CuO nanostructures as a sensitive sensor for catalysis. Sens Actuators B 134(2):761–768

    Article  Google Scholar 

  • Thiagarajan S, Yang R-F, Chen S-M (2009) Palladium nanoparticles modified electrode for the selective detection of catecholamine neurotransmitters in presence of ascorbic acid. Bioelectrochemistry 75(2):163–169

    Article  Google Scholar 

  • Wang H, Xu J-Z, Zhu J-J, Chen H-Y (2002) Preparation of CuO nanoparticles by microwave irradiation. J Cryst Growth 244(1):88–94

    Article  Google Scholar 

  • Wang Y, Li Y, Tang L, Lu J, Li J (2009) Application of graphene-modified electrode for selective detection of dopamine. Electrochem Commun 11(4):889–892

    Article  Google Scholar 

  • Wang X, Hu C, Liu H, Du G, He X, ** Y (2010) Synthesis of CuO nanostructures and their application for nonenzymatic glucose sensing. Sens Actuators B 144(1):220–225

    Article  Google Scholar 

  • Wightman RM, May LJ, Michael AC (1988) Detection of dopamine dynamics in the brain. Anal Chem 60(13):769A–793A

    Article  Google Scholar 

  • **ang J, Tu J, Zhang L, Zhou Y, Wang X, Shi S (2010a) Self-assembled synthesis of hierarchical nanostructured CuO with various morphologies and their application as anodes for lithium ion batteries. J Power Sources 195(1):313–319

    Article  Google Scholar 

  • **ang J, Tu J, Zhang L, Zhou Y, Wang X, Shi S (2010b) Simple synthesis of surface-modified hierarchical copper oxide spheres with needle-like morphology as anode for lithium ion batteries. Electrochim Acta 55(5):1820–1824

    Article  Google Scholar 

  • Xu X, Zhang M, Feng J, Zhang M (2008) Shape-controlled synthesis of single-crystalline cupric oxide by microwave heating using an ionic liquid. Mater Lett 62(17):2787–2790

    Article  Google Scholar 

  • Xu L, Sithambaram S, Zhang Y, Chen C-H, ** L, Joesten R, Suib SL (2009) Novel urchin-like CuO synthesized by a facile reflux method with efficient olefin epoxidation catalytic performance. Chem Mater 21(7):1253–1259

    Article  Google Scholar 

  • Yu L, Zhang G, Wu Y, Bai X, Guo D (2008) Cupric oxide nanoflowers synthesized with a simple solution route and their field emission. J Cryst Growth 310(12):3125–3130

    Article  Google Scholar 

  • Zhang X, Wang G, Liu X, Wu H (2008) Synthesis and electrochemical properties of CuO nanobelts. Mater Chem Phys 112(3):726–729

    Article  Google Scholar 

  • Zhang W-D, Xu B, Jiang L-C (2010) Functional hybrid materials based on carbon nanotubes and metal oxides. J Mater Chem 20(31):6383–6391

    Article  Google Scholar 

  • Zheng X, Xu C, Tomokiyo Y, Tanaka E, Yamada H, Soejima Y (2000) Observation of charge stripes in cupric oxide. Phys Rev Lett 85(24):5170

    Article  Google Scholar 

  • Zheng S-F, Hu J-S, Zhong L-S, Song W-G, Wan L-J, Guo Y-G (2008) Introducing dual functional CNT networks into CuO nanomicrospheres toward superior electrode materials for lithium-ion batteries. Chem Mater 20(11):3617–3622

    Article  Google Scholar 

  • Zhu Y, Yu T, Cheong F, Xu X, Lim C, Tan V, Thong J, Sow CH (2005) Large-scale synthesis and field emission properties of vertically oriented CuO nanowire films. Nanotechnology 16(1):88

    Article  Google Scholar 

  • Zhu J, Bi H, Wang Y, Wang X, Yang X, Lu L (2007) Synthesis of flower-like CuO nanostructures via a simple hydrolysis route. Mater Lett 61(30):5236–5238

    Article  Google Scholar 

Download references

Acknowledgments

The authors also wish to extend their sincere appreciation to Scientific Research at King Saud University for funding through the Research Group Project No. RGP-VPP-236.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zafar Hussain Ibupoto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baloach, Qua., Nafady, A., Tahira, A. et al. An amperometric sensitive dopamine biosensor based on novel copper oxide nanostructures. Microsyst Technol 23, 1229–1235 (2017). https://doi.org/10.1007/s00542-015-2805-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-015-2805-z

Keywords

Navigation