Log in

Nanocrystals of COF-300 as physical and chemical recognition elements in silver(I) voltammetric sensor: experimental condition optimization by central composite design

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The nanocrystals of COF-300 were produced and employed as a sensitive species for modifying the carbon paste electrode (CPE) to present an electrochemical sensor for quantifying silver by strip** voltammetry technique. Various characterization experiments (FT-IR, XRD, BET, SEM/EDS, cyclic voltammetry (CV), and electrochemical impedance (EIS)) approve the correctness of the COF-300 synthesis and the appropriate performance of the structured COF-300/CPE. Employing central composite design (CCD), the best quantities of the parameters influencing COF-300/CPE operation have been ascertained. The chemical stability and high crystallinity of COF-300, together with the presence of many recognition elements (nitrogen, oxygen, and π-electrons) in the structure of COF-300, as well as its high area and porosity, provide the conditions for depositing a large quantity of silver in the COF-300/CPE matrix. The COF employed to organize this sensor has been chosen and synthesized in such a manner that its size discrimination individuality makes it admit silver and prevent other interference species. The ability of the designed COF-300/CPE to measure silver without major mercury interference is a very desirable electro-analytical feature of this sensor. These properties of COF-300 ultimately lead to high sensitivity and selectivity of the COF-300/CPE sensor. Using electrochemical and SEM/EDS procedures, the mechanism of the COF-300/CPE function was investigated. Regression procedure in the range of 1 × 10–9–1 × 10–5 M leads to a linear relation between strip** current and silver concentration. The LOD (RSD = 1/3) was 3.0 × 10–10 M. The RSD values for five electrodes and each with five repetitions are about 3% for the concentration of 5 µM silver(I). Several statistical tests were used to indicate the analytical reliability of the structured COF-300/CPE.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The authors approve that the data supporting the results of this investigation are obtainable within the article.

References

  1. Li J, **g X, Li Q, Li S, Gao X, Feng X, Wang B (2020) Chem Soc Rev 49:3565

    Article  CAS  PubMed  Google Scholar 

  2. Singh V, Byon HR (2021) Mater Adv 2:3188

    Article  CAS  Google Scholar 

  3. Ma D, Zhao H, Cao F, Zhao H, Li J, Wang L, Liu K (2022) Chem Sci 13:2385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xu M, Lai C, Liu X, Li B, Zhang M, Xu F, Liu S, Li L, Qin L, Yi H, Fu Y (2021) J Mater Chem A 9:24148

    Article  CAS  Google Scholar 

  5. Wang D, Qiu T, Guo W, Liang Z, Tabassum H, **a D, Zou R (2021) Energy Environ Sci 14:688

    Article  CAS  Google Scholar 

  6. Zhao X, Pachfule P, Thomas A (2021) Chem Soc Rev 50:6871

    Article  CAS  PubMed  Google Scholar 

  7. Guan Q, Wang G, Zhou L, Li W, Dong Y (2020) Nanoscale Adv 2:3656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu R, Tan KT, Gong Y, Chen Y, Li Z, **e S, He T, Lu Z, Yang H, Jiang D (2021) Chem Soc Rev 50:120

    Article  CAS  PubMed  Google Scholar 

  9. Guan Q, Zhou L, Dong Y (2022) Chem Soc Rev 51:6307

    Article  CAS  PubMed  Google Scholar 

  10. Sani R, Dey TK, Sarkar M, Basu P, Islam SM (2022) Mater Adv 3:5575

    Article  CAS  Google Scholar 

  11. Guo L, Yang L, Li M, Kuang L, Song Y, Wang L (2021) Coord Chem Rev 440:213957

    Article  CAS  Google Scholar 

  12. Yang Y, Shen Y, Wang L, Song Y, Wang L (2019) J Electroanal Chem 855:113590

    Article  CAS  Google Scholar 

  13. Chen J, Li N, Liu J, Zheng F (2020) Microchem J 159:105460

    Article  CAS  Google Scholar 

  14. Kong M, ** P, Wei W, Wang W, Qin H, Chen H, He J (2021) Microchem J 160:105650

    Article  CAS  Google Scholar 

  15. Guan Q, Guo H, Xue R, Wang M, Zhao X, Fan T, Yang W, Xu M, Yang W (2021) J Electroanal Chem 880:114932

    Article  CAS  Google Scholar 

  16. Ma B, Guo H, Wang M, Wang Q, Yang W, Wang Y, Yang W (2020) Microchem J 155:104776

    Article  CAS  Google Scholar 

  17. Benedetto GED, Masi SD, Pennetta A, Malitesta C (2019) Biosensors 9:26

    Article  PubMed  PubMed Central  Google Scholar 

  18. Huang X, Sun C, Feng X (2020) Sci China Chem 63:1367

    Article  CAS  Google Scholar 

  19. Xu H, Gao J, Jiang D (2015) Nature Chem 7:905

    Article  CAS  Google Scholar 

  20. Feng J, Li Y, Zhang Y, Xu Y, Cheng X (2022) Chem Eng J 429:132499

    Article  CAS  Google Scholar 

  21. ** P, Niu X, Gao Z, Xue X, Zhang F, Cheng W, Ren C, Du H, Manyande A, Chen H (2021) ACS Appl Nano Mater 4:5834

    Article  CAS  Google Scholar 

  22. Bhambri H, Khullar S, Sakshi, Mandal SK (2022) Mater Adv 3:19

  23. Zhu L, Zhang Y (2017) Molecules 22:1149

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wei D, Zhang A, Ai PY, Wang PX (2020) Chem Asian J 15:1140

    Article  CAS  PubMed  Google Scholar 

  25. Lu Q, Ma Y, Li H, Guan X, Yusran Y, Xue M, Fang Q, Yan Y, Qiu S, Valtchev V (2018) Angew Chem Int Ed 57:6042

    Article  CAS  Google Scholar 

  26. Cheng Y, Zhai L, Ying Y, Wang Y, Liu G, Dong J, Ng DZL, Khan SA, Zhao D (2019) J Mater Chem A 7:4549

    Article  CAS  Google Scholar 

  27. Ma T, Kapustin EA, Yin SX, Liang L, Zhou Z, Niu J, Li L, Wang Y, Su J, Li J, Wang X, Wang WD, Wang W, Sun J, Yaghi OM (2018) Science 361:48

    Article  CAS  PubMed  Google Scholar 

  28. Kielland J (1937) J Am Chem Soc 59:1675

    Article  CAS  Google Scholar 

  29. Fu J, Das S, **ng G, Ben T, Valtchev V, Qiu S (2016) J Am Chem Soc 24:7673

    Article  Google Scholar 

  30. Fischbach DM, Rhoades G, Espy C, Goldberg F, Smith BJ (2019) Chem Commun 55:3594

    Article  CAS  Google Scholar 

  31. Ma T, Li J, Niu J, Zhang L, Etman AS, Lin C, Shi D, Chen P, Li L, Du X, Sun J, Wang W (2018) J Am Chem Soc 140:6763

    Article  CAS  PubMed  Google Scholar 

  32. Gao W, Sun X, Niu H, Song X, Li K, Gao H, Zhang W, Yu J, Jia M (2015) Micropor Mesopor Mater 213:59

    Article  CAS  Google Scholar 

  33. Yu D, Gao W, **ng S, Lian L, Zhang H, Wang X, lou D (2019) RSC Adv 9:4884

  34. Sun T, Wei L, Chen Y, Ma Y, Zhang Y (2019) J Am Chem Soc 141:10962

    Article  CAS  PubMed  Google Scholar 

  35. Moya A, Hernando-Pérez M, Pérez-Illana M, Martín CS, Gómez-Herrero J, Alemán J, Mas-Ballesté R, Pablo PJd (2020) Nanoscale 12:1128

  36. Pearson RG (1963) J Am Chem Soc 85:3533

    Article  CAS  Google Scholar 

  37. Greenwood NN, Earnshaw A (1997) Chemistry of the Elements, 2nd edn. Reed Educational and Professional Publishing Ltd, Oxford, pp 1179, 1187, 1196

  38. Ma L, Zhang X, Ikram M, Ullah M, Wu H, Shi K (2020) Chem Eng J 395:125216

    Article  CAS  Google Scholar 

  39. Wang Y, Wu Y, **e J, Hu X (2013) Sens Actuators B Chem 177:1161

    Article  CAS  Google Scholar 

  40. Zhang Y, Yu H, Liu T, Li W, Hao X, Lu Q, Liang X, Liu F, Liu F, Wang C, Yang C, Zhu H, Lu G (2020) Anal Chim Acta 1124:166

    Article  CAS  PubMed  Google Scholar 

  41. Zheng Q, Huang J, He Y, Huang H, Ji Y, Zhang Y, Lin Z (2022) ACS Appl Mater Interfaces 14:9754

    Article  CAS  PubMed  Google Scholar 

  42. ** P, Niu X, Zhang F, Dong K, Dai H, Zhang H, Wang W, Chen H, Chen X (2020) ACS Appl Mater Interfaces 12:20414

    Article  CAS  PubMed  Google Scholar 

  43. Niu X, Lv W, Sun Y, Dai H, Chen H, Chen X (2020) Microchim Acta 187:233

    Article  CAS  Google Scholar 

  44. Liu H, Chu J, Yin Z, Cai X, Zhuang L, Deng H (2018) Chem 4:1696

    Article  CAS  Google Scholar 

  45. Miller JN, Miller JC (2010) Statistics and Chemometrics for Analytical Chemistry, 6th edn. Pearson Education Limited, Harlow, p 117

  46. Evtugyn GA, Stoikov II, Belyakova SV, Stoikova EE, Shamagsumova RV, Zhukov AY, Antipin IS, Budnikov HC (2008) Talanta 76:441

    Article  CAS  PubMed  Google Scholar 

  47. Sauls FC (2013) J Chem Educ 90:1212

    Article  CAS  Google Scholar 

  48. Tashkhourian J, Javadi S, Nami Ana F (2011) Microchim Acta 173:79

    Article  CAS  Google Scholar 

  49. Krizkova S, Krystofova O, Trnkova L, Hubalek J, Adam V, Beklova M, Horna A, Havel L, Kizek R (2009) Sensors 9:6934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Švancara I, Kalcher K, Diewald W, Vytřas K (1996) Electroanalysis 8:336

    Article  Google Scholar 

  51. El-Mai H, Espada-Bellido E, Stitou M, García-Vargas M, Galindo-Riaño MD (2016) Talanta 151:14

    Article  CAS  PubMed  Google Scholar 

  52. Koudelkova Z, Syrovy T, Ambrozova P, Moravec Z, Kubac L, Hynek D, Richtera L, Adam V (2017) Sensors 17:1832

    Article  PubMed  PubMed Central  Google Scholar 

  53. Culková E, Lukáčová-Chomisteková Z, Bellová R, Melicherčíková D, Durdiak J, Rievaj M, Vojs M, Tomčík P (2020) Monatsh Chem 151:1009

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Reza Zanganeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zanganeh, A.R., Tayebani, M. Nanocrystals of COF-300 as physical and chemical recognition elements in silver(I) voltammetric sensor: experimental condition optimization by central composite design. Monatsh Chem 154, 339–353 (2023). https://doi.org/10.1007/s00706-023-03047-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-023-03047-6

Keywords

Navigation