Log in

ZIF-67 nanocrystals for determining silver: optimizing conditions by Box–Behnken design

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The synthesis and use of a suitable metal–organic framework (ZIF-67) as a sensory material for voltammetric measuring of silver(I) is the subject of this investigative work. In this regard, the size exclusion property of the ZIF-67 is coupled with the analytical voltammetry method and as a result, an efficient approach for measuring silver(I) has been obtained with appropriate selectivity and sensitivity. The detailed characterization of the synthesized ZIF-67 as well as the carbon paste electrode modified with it (Fourier transform-infrared spectroscopy, X-ray diffraction, transmission electron microscopy, scanning electron microscopy–energy-dispersive X-ray analysis, Brunauer–Emmett–Teller method, cyclic voltammetry, and impedance spectroscopy) indicates the exact synthesis of high-purity ZIF-67. Box–Behnken design has been used to optimize the conditions of preparation and operation of the sensor. There is a direct relationship between silver molarity in the enrichment solution and silver strip** current in the 1.0 × 10−10 to 2.5 × 10−7 molarity range. The detection limit was 2.5 × 10−11 M. Proper selectivity of this sensor greatly reduces mercury interference in silver measurement. When using the sensor to measure silver in real samples, results were obtained that agree with the results of the classical method of measuring silver.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Chuang CH, Kung CW (2020) Metal–organic frameworks toward electrochemical sensors: challenges and opportunities. Electroanalysis 32:1885–1895

    CAS  Google Scholar 

  2. Anik Ü, Timur S, Dursun Z (2019) Metal organic frameworks in electrochemical and optical sensing platforms: a review. Microchim Acta. https://doi.org/10.1007/s00604-019-3321-0

    Article  Google Scholar 

  3. Zhao Y (2016) Emerging applications of metal–organic frameworks and covalent organic frameworks. Chem Mater 28:8079–8081

    CAS  Google Scholar 

  4. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal–organic frameworks. Science 341:1230444

    PubMed  Google Scholar 

  5. Zhong G, Liu D, Zhang J (2018) The application of ZIF-67 and its derivatives: adsorption, separation, electrochemistry and catalysts. J Mater Chem A 6:1887–1899

    CAS  Google Scholar 

  6. Bhattacharjee S, Jang MS, Kwon HJ, Ahn WS (2014) Zeolitic imidazolate frameworks: synthesis, functionalization, and catalytic/adsorption applications. Catal Surv Asia 18:101–127

    CAS  Google Scholar 

  7. Arif D, Hussain Z, Sohail M, Liaqat MA, Khan MA, Noor T (2020) A non-enzymatic electrochemical sensor for glucose detection based on Ag@TiO2@ Metal–organic framework (ZIF-67) nanocomposite. Front Chem 8:573510

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Tang J, Jiang S, Liu Y, Zheng S, Bai L, Guo J, Wang J (2018) Electrochemical determination of dopamine and uric acid using a glassy carbon electrode modified with a composite consisting of a Co(II)-based metal–organic framework (ZIF-67) and graphene oxide. Microchim Acta 185:486

    Google Scholar 

  9. Dong Y, Zheng J (2020) Tremella-like ZIF-67/rGO as electrode material for hydrogen peroxide and dopamine sensing applications. Sens Actuators B 311:127918

    CAS  Google Scholar 

  10. Zhang W, Fan S, Li X, Liu S, Duan D, Leng L, Cui C, Zhang Y, Qu L (2020) Electrochemical determination of lead(II) and copper(II) by using phytic acid and polypyrrole functionalized metal–organic frameworks. Microchim Acta 187:69

    CAS  Google Scholar 

  11. Zhang Y, Yu H, Liu T, Li W, Hao X, Lu Q, Liang X, Liu F, Liu F, Wang C, Yang C, Zhu H, Lu G (2020) Highly sensitive detection of Pb2+ and Cu2+ based on ZIF-67/MWCNT/Nafion-modified glassy carbon electrode. Anal Chim Acta 1124:166–175

    CAS  PubMed  Google Scholar 

  12. Shi L, Li Y, Cai X, Zhao H, Lan M (2017) ZIF-67 derived cobalt-based nanomaterials for electrocatalysis and nonenzymatic detection of glucose: difference between the calcination atmosphere of nitrogen and air. J Electroanal Chem 799:512–518

    CAS  Google Scholar 

  13. Shi L, Cai X, Li H, He H, Zhao H, Lan M (2018) ZIF-67 derived porous carbon from calcination and acid etching process as an enzyme immobilization platform for glucose sensing. Electroanalysis 30:466–473

    CAS  Google Scholar 

  14. Bhattacharjee S, Lee YR, Ahn WS (2015) Post-synthesis functionalization of a zeolitic imidazolate structure ZIF-90: a study on removal of Hg(II) from water and epoxidation of alkenes. CrystEngComm 17:2575–2582

    CAS  Google Scholar 

  15. Švancara I, Vytřas K, Kalcher K, Walcarius A, Wang J (2009) Carbon paste electrodes in facts, numbers, and notes: a review on the occasion of the 50-years jubilee of carbon paste in electrochemistry and electroanalysis. Electroanalysis 21:7–28

    Google Scholar 

  16. Unala F, Kayab F (2020) Modelling of relation between synthesis parameters and average crystallite size of Yb2O3 nanoparticles using Box-Behnken design. Ceram Int 46:26800–26808

    Google Scholar 

  17. Salman M, Shahid M, Sahar T, Naheed S, Mahmood-ur-Rahman AM, Iqbal M, Nazir A (2020) Development of regression model for bacteriocin production from local isolate of Lactobacillus acidophilus MS1 using Box-Behnken design. Biocatal Agric Biotechnol 24:101542

    Google Scholar 

  18. Goo YT, Park SY, Chae BR, Yoon HY, Kim CH, Choi JY, Song SH, Choi YW (2020) Optimization of solid self-dispersing micelle for enhancing dissolution and oral bioavailability of valsartan using Box-Behnken design. Int J Pharm 585:119483

    CAS  PubMed  Google Scholar 

  19. Khan A, Ali M, Ilyas A, Naik P, Vankelecom IFJ, Gilani MA, Bilad MR, Sajjad Z, Khan AL (2018) ZIF-67 filled PDMS mixed matrix membranes for recovery of ethanol via pervaporation. Sep Purif Technol 206:50–58

    CAS  Google Scholar 

  20. Zhou K, Mousavi B, Luo Z, Phatanasri S, Chaemchuen S, Verpoort F (2017) Characterization and properties of Zn/Co zeolitic imidazolate frameworks vs. ZIF-8 and ZIF-67. J Mater Chem A 5:952–957

    CAS  Google Scholar 

  21. Sotomayor FJ, Cychosz KA, Thommes M (2018) Characterization of micro/mesoporous materials by physisorption: concepts and case studies. Acc Mater Surf Res 3:34–50

    Google Scholar 

  22. Soumitra P, Challagulla S, Chakraborty C, Roy S (2019) A hydrogen evolution reaction induced unprecedentedly rapid electrocatalytic reduction of 4-nitrophenol over ZIF-67 compare to ZIF-8. J Electroanal Chem 853:113545

    Google Scholar 

  23. Lin KYA, Chang HA (2015) Ultra-high adsorption capacity of zeolitic imidazole framework-67 (ZIF-67) for removal of malachite green from water. Chemosphere 139:624–631

    CAS  PubMed  Google Scholar 

  24. Wang Y, Hou P, Wang Z, Kang P (2017) Zinc imidazolate metal–organic frameworks (ZIF-8) for electrochemical reduction of CO2 to CO. ChemPhysChem 18:3142–3147

    CAS  PubMed  Google Scholar 

  25. ** Y, Ge C, Li X, Zhang M, Xu G, Li D (2018) A sensitive electrochemical sensor based on ZIF-8–acetylene black–chitosan nanocomposites for rutin detection. RSC Adv 8:32740–32746

    CAS  Google Scholar 

  26. Ma L, Zhang X, Ikram M, Ullah M, Wu H, Shi K (2020) Controllable synthesis of an intercalated ZIF-67/EG structure for the detection of ultratrace Cd2+, Cu2+, Hg2+ and Pb2+ ions. Chem Eng J 395:125216

    CAS  Google Scholar 

  27. Usov PM, McDonnell-Worth C, Zhou F, MacFarlane DR, D’Alessandro DM (2015) The electrochemical transformation of the zeolitic imidazolate framework ZIF-67 in aqueous electrolytes. Electrochim Acta 153:433–438

    CAS  Google Scholar 

  28. Miller JN, Miller JC (2010) Statistics and chemometrics for analytical chemistry, 6th edn. Pearson Education Limited, Harlow, p 117. ISBN 978-0-273-73042-2

  29. Kielland J (1937) Individual activity coefficients of ions in aqueous solutions. J Am Chem Soc 59:1675–1678

    CAS  Google Scholar 

  30. Evtugyn GA, Stoikov II, Belyakova SV, Stoikova EE, Shamagsumova RV, Zhukov AY, Antipin IS, Budnikov HC (2008) Selectivity of solid-contact Ag potentiometric sensors based on thiacalix[4]arene derivatives. Talanta 76:441–447

    CAS  PubMed  Google Scholar 

  31. Wang Y, Wu Y, **e J, Hu X (2013) Metal–organic framework modified carbon paste electrode for lead sensor. Sens Actuators B 177:1161–1166

    CAS  Google Scholar 

  32. Wang Y, Ge H, Wu Y, Ye G, Chen H, Hu X (2014) Construction of an electrochemical sensor based on amino-functionalized metal–organic frameworks for differential pulse anodic strip** voltammetric determination of lead. Talanta 129:100–105

    CAS  PubMed  Google Scholar 

  33. Doménech A, García H, Doménech-Carbó MT, Llabrés-i-Xamena F (2006) Electrochemistry nanometric patterning of MOF particles: anisotropic metal electrodeposition in Cu/MOF. Electrochem Commun 8:1830–1834

    Google Scholar 

  34. Doménech A, García H, Doménech-Carbó MT, Llabrés-i-Xamena F (2007) Electrochemistry of metal–organic frameworks: a description from the voltammetry of microparticles approach. J Phys Chem C 111:13701–13711

    Google Scholar 

  35. Xu K, Pérez-Ràfols C, Cuartero M, Crespo GA (2021) Electrochemical detection of trace silver. Electrochim Acta 74:137929

    Google Scholar 

  36. Fu L, Wang A, **e K, Zhu J, Chen F, Wang H, Zhang H, Su W, Wang Z, Zhou C, Ruan S (2020) Electrochemical detection of silver ions by using sulfur quantum dots modified gold electrode. Sens Actuators B 304:127390

    CAS  Google Scholar 

  37. Xu K, Crespo GA, Cuartero M (2020) Subnanomolar detection of ions using thin voltammetric membranes with reduced exchange capacity. Sens Actuators B 321:128453

    CAS  Google Scholar 

  38. Vidal JC, Torrero D, Menes S, de La Fuente A, Castillo JR (2020) Voltammetric sensing of silver nanoparticles on electrodes modified with selective ligands by using covalent and electropolymerization procedures. Discrimination between silver(I) and metallic silver. Microchim Acta 187:183

    CAS  Google Scholar 

  39. Liu Q, Li J, Yang W, Zhang X, Zhang C, Labbe C, Portier X, Liu F, Yao J, Liu B (2020) Simultaneous detection of trace Ag(I) and Cu(II) ions using homoepitaxially grown GaN micropillar electrode. Anal Chim Acta 1100:22–30

    CAS  PubMed  Google Scholar 

  40. Kolpakova N, Sabitova Z, Sachkov V, Medvedev R, Nefedov R, Orlov V (2019) Determination of Au(III) and Ag(I) in carbonaceous shales and pyrites by strip** voltammetry. Minerals 9:78

    CAS  Google Scholar 

  41. Hernández D, Cepriá G, Laborda F, Castillo JR (2019) Detection and determination of released ions in the presence of nanoparticles: selectivity or strategy? Electroanalysis 31:405–410

    Google Scholar 

  42. Shang H, Xu H, ** L, Chen C, Song T, Wang C, Du Y (2019) Electrochemical–photoelectrochemical dual-mode sensing platform based on advanced Cu9S8/polypyrrole/ZIF-67 heterojunction nanohybrid for the robust and selective detection of hydrogen sulfide. Sens Actuators B 301:127060

    CAS  Google Scholar 

  43. Hashemi F, Zanganeh AR, Naeimi F, Tayebani M (2021) Construction of a Tl(I) voltammetric sensor based on ZIF-67 nanocrystals: optimization of operational conditions via response surface design. Anal Bioanal Chem 413:5215–5226

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Reza Zanganeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaghoubi, M., Zanganeh, A.R., Mokhtarian, N. et al. ZIF-67 nanocrystals for determining silver: optimizing conditions by Box–Behnken design. J Appl Electrochem 52, 683–696 (2022). https://doi.org/10.1007/s10800-021-01660-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-021-01660-z

Keywords

Navigation