Log in

Voltammetric detection of silver in commercial products on boron doped diamond electrode: strip** at lowered potential in the presence of thiosulfate ions

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Bare boron-doped diamond electrode (BDDE) was applied for investigation of deposition/strip** processes of silver ions in various supporting electrolytes. The highest signal was observed in 0.1 mol dm−3 HNO3. Detection of silver ions is also possible in 0.1 mol dm−3 Na2S2O3 where Ag+ is strongly complexed as [Ag(S2O3)2]3−. Though the sensitivity is 100 times lower, the potential of anodic dissolution of silver is significantly shifted towards the negative values. This shift might be useful for solving of some interferences which may occur in the detection process. After preliminary cyclic voltammetry, the analytical performance was studied by differential pulse anodic strip** voltammetry (DPASV) and square-wave anodic strip** voltammetry. Deposition potential of  − 0.18 V vs. Ag/AgCl and deposition time of 240 s were selected as optimum DPASV parameters. The lowest detection limit of 2.0 × 10–10 mol dm−3 was achieved with DPASV in HNO3. Negligible effect of possible interferents on Ag response proved to be a good selectivity of method. The proposed method after validation was also applied to real samples analysis of some commercial products with complex matrix. The obtained results are statistically identical with data declared by manufacturer and gained by independent technique, making this method suitable for commercial product control.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Guo W, Hu S, Zhang J, Zhang H (2011) Sci Total Environ 409:2981

    CAS  PubMed  Google Scholar 

  2. Peng JJY, Botelho MG, Matinlinna JP (2012) J Dent 40:531

    CAS  PubMed  Google Scholar 

  3. Fewtrell L (2014) Cent Res Environ Health 1

  4. Pantic I (2014) Rev Adv Mater Sci 37:15

    CAS  Google Scholar 

  5. António DC, Cascio C, Jakšić Ž, Jurašin D, Lyons DM, Nogueira AJA, Rossi F, Calzolai L (2015) Mar Environ Res 111:162

    PubMed  Google Scholar 

  6. Chaloupka K, Malam Y, Seifalian AM (2010) Trends Biotechnol 28:580

    CAS  PubMed  Google Scholar 

  7. Mikelova R, Baloun J, Petrlova J, Adam V, Havel L, Petrek J, Horna A, Kizek R (2007) Bioelectrochemistry 70:508

    CAS  PubMed  Google Scholar 

  8. Sang S, Yu C, Li N, Ji Y, Zhang J (2012) Int J Electrochem Sci 7:3306

    CAS  Google Scholar 

  9. Nadiki HH, Taher MA, Ashkenani H, Sheikhshoai I (2012) Analyst 137:2431

    CAS  PubMed  Google Scholar 

  10. Araújo CST, Alves VN, Rezende HC, Coelho NMM (2010) Microchem J 96:82

    Google Scholar 

  11. Zhang T, Chai Y, Yuan R, Guo J (2012) Mater Sci Eng C 32:1179

    CAS  Google Scholar 

  12. Veverková L, Hradilová Š, Milde D, Panáček A, Skopalová J, Kvítek L, Petrželová K, Zbořil R (2014) Spectrochim Acta Part B 102:7

    Google Scholar 

  13. Hosoba M, Oshita K, Katarina RK, Takayanagi T, Oshima M, Motomizu S (2009) Anal Chim Acta 639:51

    CAS  PubMed  Google Scholar 

  14. Anekthirakun P, Imyim A (2019) Microchem J 145:470

    CAS  Google Scholar 

  15. Choleva TG, Tsogas GZ, Giokas DL (2019) Talanta 196:255

    CAS  PubMed  Google Scholar 

  16. Ashkenani H, Taher MA (2012) Microchem J 103:185

    CAS  Google Scholar 

  17. Zhang S, Pu Q, Liu P, Sun Q, Su Z (2002) Anal Chim Acta 452:223

    CAS  Google Scholar 

  18. Yang X, Jia Z, Yang X, Li G, Liao X (2017) Saudi J Biol Sci 24:589

    CAS  PubMed  PubMed Central  Google Scholar 

  19. López-López JA, Herce-Sesa B, Moreno C (2016) Talanta 159:117

    PubMed  Google Scholar 

  20. Kocúrová L, Balogh IS, Nagy L, Billes F, Simon A, Andruch V (2011) Microchem J 99:514

    Google Scholar 

  21. Shah RK (2016) Orient J Chem 32:499

    CAS  Google Scholar 

  22. Ensafi AA, Zarei K (1997) Fresenius J Anal Chem 358:475

    CAS  Google Scholar 

  23. Ensafi AA, Abbasi AS (1997) Anal Lett 30:327

    CAS  Google Scholar 

  24. Jones P, Beere HG (1995) Anal Proc Incl Anal Commun 32:169

    CAS  Google Scholar 

  25. El-Mai H, Espada-Bellido E, Stitou M, García-Vargas M, Galindo-Riaño MD (2016) Talanta 151:14

    CAS  PubMed  Google Scholar 

  26. Radulescu MC, Chira A, Radulescu M, Bucur B, Bucur MP, Radu GL (2010) Sensors 10:11340

    CAS  PubMed  Google Scholar 

  27. Zejli H, de Cisneros JLHH, Naranjo-Rodriguez I, Temsamani KR (2007) Talanta 71:1594

    CAS  PubMed  Google Scholar 

  28. Gholami M, Koivisto B (2019) Appl Surf Sci 467–468:112

    Google Scholar 

  29. Nezhadali A, Bonakdar GA (2019) J Food Drug Anal 27:305

    CAS  PubMed  Google Scholar 

  30. Zhai X, Li Z, Shi J, Huang X, Sun Z, Zhang D, Zou X, Sun Y, Zhang J, Holmes M, Gong Y, Povey M, Wang S (2019) Food Chem 290:135

    CAS  PubMed  Google Scholar 

  31. Min SH, Lee GY, Ahn SH (2019) Compos B 161:395

    CAS  Google Scholar 

  32. Dou N, Zhang S, Xu J (2019) RSC Adv 9:31440

    CAS  Google Scholar 

  33. Apyari VV, Terenteva EA, Kolomnikova AR, Garshev AV, Dmitrienko SG, Zolotov YA (2019) Talanta 202:51

    CAS  PubMed  Google Scholar 

  34. Orouji A, Abbasi-Moayed S, Hormozi-Nezhad MR (2019) Spectrochim Acta Part A 219:496

    CAS  Google Scholar 

  35. Eksin E, Erdem A, Fafal T, Kivcak B (2019) Electroanalysis 31:1075

    CAS  Google Scholar 

  36. Culková E, Lukáčová-Chomisteková Z, Bellová R, Melicherčíková D, Durdiak J, Timko J, Rievaj M, Tomčík P (2018) Int J Electrochem Sci 13:6358

    Google Scholar 

  37. Hutton LA, Newton ME, Unwin PR, Macpherson JV (2011) Anal Chem 83:735

    CAS  PubMed  Google Scholar 

  38. Banks CE, Hyde ME, Tomčík P, Jacobs R, Compton RG (2004) Talanta 62:279

    CAS  PubMed  Google Scholar 

  39. Jahandari S, Taher MA, Fazelirad H, Sheikhshoai I (2013) Microchim Acta 180:347

    CAS  Google Scholar 

  40. Sadok I, Tyszczuk-Rotko K (2018) J Electroanal Chem 808:204

    CAS  Google Scholar 

  41. Ebrahimi M, Raoof JB, Ojani R (2015) Talanta 144:619

    CAS  PubMed  Google Scholar 

  42. Li YH, **e HQ, Zhou FQ (2005) Talanta 67:28

    CAS  PubMed  Google Scholar 

  43. Kamenev AI, Lushov KA (2001) J Anal Chem 56:380

    CAS  Google Scholar 

  44. Rohani T, Taher MA (2010) Talanta 80:1827

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the GAPF Agency of Faculty of Education, The Catholic University in Ružomberok under the project No. GAPF 1/4/2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Culková.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Culková, E., Lukáčová-Chomisteková, Z., Bellová, R. et al. Voltammetric detection of silver in commercial products on boron doped diamond electrode: strip** at lowered potential in the presence of thiosulfate ions. Monatsh Chem 151, 1009–1017 (2020). https://doi.org/10.1007/s00706-020-02634-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-020-02634-1

Keywords

Navigation