Log in

A micromechanical model for the effective properties of two-phase magnetoelectric composites

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

A micromechanical model based on the bridging theory is proposed for predicting the effective coefficients of two-phase magnetoelectric composites. The 17 different coefficients, including the effective elastic, piezoelectric, piezomagnetic, dielectric, magnetic permeability and magnetoelectric coupling coefficients, are divided into two groups based on the analysis of existing results of the classical micromechanical models. The relationship between the strain field, electric field and the magnetic field of two constituents is presented. The results are well matched with the finite element results. The classical models for predicting the effective coefficients of magnetoelectric composites can be covered flexibly by the presented unified micromechanical model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Nan, C.W., Bichurin, M.I., Dong, S., Viehland, D., Srinivasan, G.: Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103(3), 31101 (2008)

    Article  Google Scholar 

  2. Nan, C.W.: Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases. Phys. Rev. B 50(9), 6082–6088 (1994)

    Article  Google Scholar 

  3. Benveniste, Y.: Magnetoelectric effect in fibrous composites with piezoelectric and piezomagnetic phases. Phys. Rev. B 51(22), 16424–16427 (1995)

    Article  Google Scholar 

  4. Benveniste, Y.: On the micromechanics of fibrous piezoelectric composites. Mech. Mater. 18(3), 183–193 (1994)

    Article  Google Scholar 

  5. Benveniste, Y.: Exact results in the micromechanics of fibrous piezoelectric composites exhibiting pyroelectricity. Proc. Math. Phys. Sci. 441(1911), 59–81 (1993)

    Google Scholar 

  6. Hashin, Z.: Analysis of properties of fiber composites with anisotropic constituents. J. Appl. Mech. 46(3), 543 (1979)

    Article  Google Scholar 

  7. Milgrom, M., Shtrikman, S.: Linear response of two-phase composites with cross moduli: exact universal relations. Phys. Rev. A Gen. Phys. 40(3), 1568–1575 (1989)

    Article  Google Scholar 

  8. Li, J.Y., Dunn, M.L.: Micromechanics of magnetoelectroelastic composite materials: average fields and effective behavior. J. Intell. Mater. Syst. Struct. 9(6), 404–416 (1998)

    Article  Google Scholar 

  9. Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Math. Phys. Sci. 241(1226), 376–396 (1957)

    MathSciNet  MATH  Google Scholar 

  10. Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21(5), 571–574 (1973)

    Article  Google Scholar 

  11. Chen, T.: Exact moduli and bounds of two-phase composites with coupled multifield linear responses. J. Mech. Phys. Solids 45(3), 385–398 (1997)

    Article  MathSciNet  Google Scholar 

  12. Liu, J., Liu, X., Zhao, Y.: Green’s functions for anisotropic magnetoelectroelastic solids with an elliptical cavity or a crack. Int. J. Eng. Sci. 39(12), 1405–1418 (2001)

    Article  Google Scholar 

  13. Huang, G.Y., Wang, B.L., Mai, Y.W.: Effective properties of magnetoelectroelastic materials with aligned ellipsoidal voids. Mech. Res. Commun. 36(5), 563–572 (2009)

    Article  Google Scholar 

  14. Aboudi, J.: Micromechanical analysis of fully coupled electro-magneto-thermo-elastic multiphase composites. Smart Mater. Struct. 10(5), 867–877 (2001)

    Article  MathSciNet  Google Scholar 

  15. Lee, J., Boyd, J.G., Lagoudas, D.C.: Effective properties of three-phase electro-magneto-elastic composites. Int. J. Eng. Sci. 43(10), 790–825 (2005)

    Article  MathSciNet  Google Scholar 

  16. Wang, Y., Weng, G.J.: Magnetoelectric coupling and overall properties of multiferroic composites with 0–0 and 1–1 connectivity. J. Appl. Phys. 118(17), 174102 (2015)

    Article  Google Scholar 

  17. Huang, Z.M.: A unified micromechanical model for the mechanical properties of two constituent composite materials. part I: elastic behavior. J. Thermoplast. Compos. Mater. 13(4), 252–271 (2000)

    Article  Google Scholar 

  18. Huang, Z.M.: A unified micromechanical model for the mechanical properties of two-constituent composite materials. part II:plastic behavior. J. Thermoplast. Compos. Mater. 13(5), 344–362 (2000)

    Article  Google Scholar 

  19. Pakam, N., Arockiarajan, A.: An analytical model for predicting the effective properties of magneto-electro-elastic (MEE) composites. Comput. Mater. Sci. 65, 19–28 (2012)

    Article  Google Scholar 

  20. Huang, Z.M.: Micromechanical failure analysis of unidirectional composites. InTech Open Access publisher, pp. 1–42 (2018).

  21. Lee, J., Iv, J.G.B., Lagoudas, D.C.: Effective properties of three-phase electro-magneto-elastic composites. Int. J. Eng. Sci. 43(10), 790–825 (2005)

    Article  MathSciNet  Google Scholar 

  22. Xu, R.C., Wang, Z.H., Chen, G., Li, C.Y., Gao, R.L.: Research progress on magnetoelectric coupling effect of multiferroic composites. China Ceram. 54(9), 1–11 (2018). ((in Chinese))

    Google Scholar 

  23. Avakian, A., Ricoeur, A.: Constitutive modeling of nonlinear reversible and irreversible ferromagnetic behaviors and application to multiferroic composites. J. Intell. Mater. Syst. Struct. 27(18), 2536–2554 (2016)

    Article  Google Scholar 

  24. Jiang, M.H., Xu, P., Cheng, G.: Static elastic modulus and compressive strength of giant magnetostrictive composites. Rare Met. Mater. Eng. 34(6), 912–915 (2005). ((in Chinese))

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (11832014, 11972257 and 11472193), the China Scholarship Council (CSC) and the Fundamental Research Funds for the Central Universities (2212018022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yueting Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The expressions B1 appearing in Eq. (79) and B2 appearing in Eqs. (70), (73) and (76) take the following form:

$$B_{1} = V_{f}^{2} + \left( {A_{44} + A_{77} } \right)V_{f} V_{m} + \left( { - A_{48} A_{75} + A_{44} A_{77} } \right)V_{m}^{2} ,$$
(94)
$$B_{2} = V_{f}^{2} + \left( {A_{1010} + A_{77} } \right)V_{f} V_{m} + \left( { - A_{107} A_{710} + A_{1010} A_{77} } \right)V_{m}^{2} .$$
(95)

The expressions, \(C_{2}\) and \(C_{3}\) appearing in Eqs. (70), (73), (76), (77), (79) and (81) take the following form:

$$C_{1} = A_{1010} + A_{44} + A_{77} ,$$
(96)
$$C_{2} = - A_{107} A_{710} - A_{48} A_{75} + A_{44} A_{77} + A_{1010} \left( {A_{44} + A_{77} } \right),$$
(97)
$$C_{3} = - A_{107} A_{44} A_{710} + A_{105} A_{48} A_{710} - A_{1010} A_{48} A_{75} + A_{1010} A_{44} A_{77} .$$
(98)

The expressions \(D_{1}\), \(D_{7}\) appearing in Eq. (70), \(D_{{2}}\) and \(D_{{3}}\) appearing in Eq. (76), \(D_{{4}}\) and \(D_{{5}}\) appearing in Eq. (77) and \(D_{{6}}\) appearing in Eq. (79) take the following form:

$$D_{1} = A_{107} q_{15}^{m} V_{f} V_{m} + e_{15}^{f} V_{f} E_{3} - A_{48} C_{44}^{m} V_{m} E_{3} ,$$
(99)
$$D_{2} = A_{107} \left( { - \mu_{11}^{f} + \mu_{11}^{m} } \right)V_{f} + A_{48} q_{15}^{m} E_{3} ,$$
(100)
$$D_{3} = A_{48} A_{710} q_{15}^{m} V_{m}^{2} - \mu_{11}^{f} V_{f} E_{2} + \mu_{11}^{m} V_{f} E_{2} ,$$
(101)
$$D_{{4}} = - A_{107} A_{710} V_{m} + A_{77} E_{3} ,$$
(102)
$$D_{{5}} = A_{75} V_{f} - A_{105} A_{710} V_{m} + A_{1010} A_{75} V_{m} ,$$
(103)
$$D_{{6}} = A_{107} \mu_{11}^{m} E_{4} + A_{48} \left( {q_{15}^{m} V_{f} - A_{105} \mu_{11}^{m} V_{m} } \right),$$
(104)
$$D_{{7}} = q_{15}^{m} V_{f} E_{2} + A_{710} V_{m} \left( {e_{15}^{f} V_{f} - A_{48} C_{44}^{m} V_{m} } \right).$$
(105)

The expressions \(E_{1}\) appearing in Eq. (35), \(E_{2}\) appearing in Eq. (A.8) and (105), \(E_{3}\) appearing in Eqs. (73), (77), (99), (100) and (102), \(E_{4}\) appearing in Eqs. (77), (81) and (104) and \(E_{{5}}\) appearing in Eqs. (66) and (67) take the following form:

$$E_{1} = \left( {v_{f} + \left( {A_{11} + A_{21} } \right)v_{m} } \right), \, E_{2} = V_{f} + A_{77} V_{m} ,$$
(106)
$$E_{3} = V_{f} + A_{1010} V_{m} , \, E_{4} = V_{f} + A_{44} V_{m} , \, E_{5} = V_{f} + A_{11} V_{m} .$$
(107)

Appendix B

In order to help readers to be clearer about the expression of the bridging element, we again give the nonzero elements of the bridging element in Appendix B for readers to browse. The non-elements of the bridging matrix are given by the order in which they appear in the article.

Equation (108) appearing in Eq. (34), and Eqs. (109), (110), (111) appearing in Eqs. (39) take the following form:

$$A_{33} = 1,A_{66} = 1,A_{99} = 1,A_{1212} = 1,$$
(108)
$$A_{{13}} = \frac{{( - 1 + A_{{11}} + A_{{21}} )(C_{{13}}^{f} - C_{{13}}^{m} )}}{{C_{{11}}^{f} + C_{{12}}^{f} - C_{{11}}^{m} C_{{12}}^{m} }},$$
(109)
$$A_{{19}} = \frac{{( - 1 + A_{{11}} + A_{{21}} )C_{{29}}^{f} }}{{C_{{11}}^{f} + C_{{12}}^{f} - C_{{11}}^{m} - C_{{12}}^{m} }}$$
(110)
$$A_{{112}} = \frac{{( - 1 + A_{{11}} + A_{{21}} )C_{{212}}^{m} }}{{C_{{11}}^{f} + C_{{12}}^{f} - C_{{11}}^{m} - C_{{12}}^{m} }},$$
(111)

where equations related to A11 and A21 are:

$$A_{{11}} = \frac{{3C_{{11}}^{f} - C_{{12}}^{f} + C_{{11}}^{m} + C_{{12}}^{m} }}{{2(C_{{11}}^{f} - C_{{12}}^{f} + C_{{11}}^{m} + C_{{12}}^{m} )}},\,A_{{21}} = \frac{{C_{{11}}^{f} + C_{{12}}^{f} - C_{{11}}^{m} - C_{{12}}^{m} }}{{2(C_{{11}}^{f} - C_{{12}}^{f} + C_{{11}}^{m} + C_{{12}}^{m} )}}$$
(112)

Equation (113)–(118) appearing in Eqs. (45)–(50) take the following form:

$$A_{1010} = \frac{{A_{1010}^{1} }}{A},$$
(113)
$$A_{75} = - \frac{{A_{75}^{1} }}{A},$$
(114)
$$A_{710} = \frac{{A_{710}^{1} }}{A},$$
(115)
$$A_{48} = - \frac{{A_{48}^{1} }}{A},$$
(116)
$$A_{105} = \frac{{A_{105}^{1} }}{A},$$
(117)
$$A_{{107}} = \frac{{A_{{107}}^{1} }}{A},$$
(118)

where equations related to A, \(A_{1010}^{1} ,A_{75}^{1} ,A_{710}^{1} ,A_{48}^{1} ,A_{105}^{1}\) and \(A_{107}^{1}\) are:

$$A = \left( {\kappa_{11}^{m} } \right)^{2} \mu_{11}^{m} C_{44}^{m} + \left( {\kappa_{11}^{f} } \right)^{2} \left( {q_{15}^{m} } \right)^{2} - C_{44}^{f} \kappa_{11}^{f} \mu_{11}^{m} \kappa_{11}^{m} - \mu_{11}^{f} \kappa_{11}^{f} C_{44}^{m} \kappa_{11}^{m} + \mu_{11}^{f} C_{44}^{f} \left( {\kappa_{11}^{m} } \right)^{2} ,$$
(119)
$$\begin{aligned} A_{{1010}}^{1} & = A_{{44}} \left( {\kappa _{{11}}^{f} } \right)^{2} \mu _{{11}}^{m} C_{{44}}^{m} + A_{{44}} \left( {\kappa _{{11}}^{f} } \right)^{2} \left( {q_{{15}}^{m} } \right)^{2} - A_{{44}} \left( {e_{{15}}^{f} } \right)^{2} \mu _{{11}}^{m} \kappa _{{11}}^{m} + A_{{77}} \left( {e_{{15}}^{f} } \right)^{2} \mu _{{11}}^{m} \kappa _{{11}}^{m} \\ & \quad - A_{{44}} C_{{44}}^{f} \kappa _{{11}}^{f} \mu _{{11}}^{m} \kappa _{{11}}^{m} - A_{{44}} \mu _{{11}}^{f} \kappa _{{11}}^{f} C_{{44}}^{m} \kappa _{{11}}^{m} + A_{{44}} \mu _{{11}}^{f} C_{{44}}^{f} \left( {\kappa _{{11}}^{m} } \right)^{2} , \\ \end{aligned}$$
(120)
$$A_{75}^{1} = \left( {A_{44} - A_{77} } \right)e_{15}^{f} \left[ {\kappa_{11}^{f} \mu_{11}^{m} C_{44}^{m} + \kappa_{11}^{f} \left( {q_{15}^{m} } \right)^{2} - \mu_{11}^{f} C_{44}^{m} \kappa_{11}^{m} } \right],$$
(121)
$$A_{710}^{1} = - A_{44} \mu_{11}^{f} e_{15}^{f} q_{15}^{m} \kappa_{11}^{m} + A_{77} \mu_{11}^{f} e_{15}^{f} q_{15}^{m} \kappa_{11}^{m} ,$$
(122)
$$A_{{48}}^{1} = (A_{{44}} - A_{{77}} )e_{{15}}^{f} \kappa _{{11}}^{m} ( - \kappa _{{11}}^{f} \mu _{{11}}^{m} + \mu _{{11}}^{f} \kappa _{{11}}^{m} )$$
(123)
$$A_{{105}}^{1} = - A_{{44}} (e_{{15}}^{f} )^{2} q_{{15}}^{m} \kappa _{{11}}^{m} + A_{{77}} (e_{{15}}^{f} )^{2} q_{{15}}^{m} \kappa _{{11}}^{m} ,$$
(124)
$$A_{107}^{1} = - A_{44} e_{15}^{f} \kappa_{11}^{f} q_{15}^{m} \kappa_{11}^{m} + A_{77} e_{15}^{f} \kappa_{11}^{f} q_{15}^{m} \kappa_{11}^{m} .$$
(125)

Equation (126)–(127) appearing in Eqs. (62)–(63) takes the following form:

$$A_{{44}} = 1 - \beta (1 - C_{{44}}^{f} /C_{{44}}^{m} ),$$
(126)
$$A_{{77}} = 1 - \gamma (1 - C_{{77}}^{f} /C_{{77}}^{m} ),$$
(127)

where the parameters \(\beta\) and \(\gamma\) are given as follows:

$$12 < \beta < 16.$$
(128)
$$0 < \gamma < 1.$$
(129)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Zhou, Y. A micromechanical model for the effective properties of two-phase magnetoelectric composites. Arch Appl Mech 92, 2549–2568 (2022). https://doi.org/10.1007/s00419-022-02195-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02195-1

Keywords

Navigation