Log in

A Micromechanical Method for the Analysis of Three-Dimensional Smart Composites

  • Published:
Mechanics of Composite Materials Aims and scope

The aim of this paper is to develop a micromechanical method based on a proper representative volume element to investigate the effective coefficients and fully coupled electromagnetoelastic responses for three-dimensional smart composites. Relations between the particulate volume fraction, effective moduli, piezoelectric coefficients, and dielectric coefficients are investigated for the composites. Their effective responses, with account of electric, magnetic, and displacement fields, are analyzed. The numerical results obtained indicate that the overall strains of piezoelectric-piezomagnetic composites strongly depend on variations of the electric and magnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. Y. Benveniste, “Magnetoelectric effect in fibrous composites with piezoelectric and piezomagnetic phases,” Phys. Rev., 51, 16424-16427 (1995).

    Article  Google Scholar 

  2. F. B. Feng, D. B. Futch, D. H. D. Hsu, and M. V. Manuel, “Effect of phase on debonds strength in shape memory alloy reinforced composites,” Mater. Des., 57, 98-102 (2014).

    Article  Google Scholar 

  3. S. S. Gohari and Z. Vrcelj, “New explicit solution for static shape control of smart laminated cantilever piezo-composite-hybrid plates/beams under thermo-electro-mechanical loads using piezoelectric actuators,” Compos. Struct., 145, 89-112 (2016).

    Article  Google Scholar 

  4. Z. K. Zhang and A. K. Soh, “Micromechanics predictions of the effective moduli of magneto electro elastic composite materials,” Eur. J. Mech. A-Solids, 24, 1054-1067 (2005).

    Article  Google Scholar 

  5. C. H. Lin and A. Muliana, “Micromechanics models for the effective nonlinear electro-mechanical responses of piezoelectric composites,” Acta Mech., 224, 1471-1492 (2013).

    Article  Google Scholar 

  6. J. J. Ye, Y. Y. Qiu, X. F. Chen, Z. Zhai, C. L. Huang, and X. L. Zhang “Numerical investigations of microscopic characteristic influences on the mechanical properties of polymer-matrix composites,” Polym. Compos., 38, No. 7, 2734-2742 (2017).

    Article  Google Scholar 

  7. M. C. Ray, “Micromechanics of piezoelectric composites with improved effective piezoelectric constant,” Int. J. Mech. Mater. Des., 3, 361-371 (2006).

    Article  Google Scholar 

  8. Y. M. Shabana and M. Ristinmaa, “Micromechanical modeling of smart composites considering debonding of reinforcements,” Int. J. Solids Struct., 48, 3209-3216 (2011).

    Article  Google Scholar 

  9. A. V. Georgiades, K. S. Challagulla, and A. L. Kalamkarov. “Modeling of the thermopiezoelastic behavior of prismatic smart composite structures made of orthotropic materials,” Compos. Part B-Eng., 37, 569-582 (2006).

    Article  Google Scholar 

  10. G. Sharifishourabi and R. Alebrahim. “Mechanical properties of potentially-smart carbon/epoxy composites with asymmetrically embedded shape memory wires,” Mater. Design., 59, 486-493 (2014).

    Article  Google Scholar 

  11. J. Sladek, V. Sladek, S. Krahulec, and C. Song, “Micromechanics determination of effective properties of voided magnetoelectroelastic materials,” Compos. Mater. Sci., 116, 103-112 (2016).

    Article  Google Scholar 

  12. T. Tang and S. D. Felicelli. “Numerical characterization of effective fully coupled thermo- electro-magneto- viscoelasticplastic response of smart composites,” Int. J. NonLin. Mech., 71, 52-62 (2015).

    Article  Google Scholar 

  13. Y. Zhong and W. Qin, “Variational asymptotic homogenization of magneto-electro-elastic materials with coated fibers,” Compos. Struct., 133, 300-311 (2015).

    Article  Google Scholar 

  14. M. H. Malakooti and H. A. Sodano, “Multi-inclusion modeling of multiphase piezoelectric composites,” Compos. Part B-Eng., 47, 181-189 (2013).

    Article  Google Scholar 

  15. Z. Zhang and X. Wang, “Effective multi-field properties of electro-magneto-thermoelastic composites estimated by finite element method approach,” Acta Mech. Solida. Sini., 28, 145-155 (2015).

    Article  Google Scholar 

  16. K. S. Challagulla and A. V. Georgiades. Micromechanical analysis of magneto-electro- thermo-elastic composite materials with applications to multilayered structures,” Int. J. Eng. Sci., 49, 85-104 (2011).

    Article  Google Scholar 

  17. J. Lv, “A hierarchical multiscale approach for predicting thermo-electro-mechanical behavior of heterogeneous piezoelectric smart materials,” Compos. Mater. Sci., 87, 88-99 (2014).

    Article  Google Scholar 

  18. J. Aboudi, Mechanics of Composite Materials-A Unified Micromechanical Approach, Elsevier Science Publ. Ltd., London, (1991).

    Google Scholar 

  19. H. Li and B. Zhang, “A new viscoelastic model based on generalized method of cells for fiber-reinforced composites,” Int. J. Plasticity, 65, 22-32 (2015).

    Article  Google Scholar 

  20. J. J. Ye, Y. Y. Qiu, X. F. Chen, and J. Ma, “Initial and final failure strength analysis of composites based on a micromechanical method,” Compos. Struct., 125, 328-335 (2015);.

    Article  Google Scholar 

  21. B. A. Bednarcy and P. W. Yarrington, “Collier Research Corporation, Hampton, Virginia Coupled Thermo-Electro-Magneto-Elastic Respose of Smart Stiffened Panels,” NASA Contractor Report CR-2009-215269 (2009).

  22. J. Aboudi, M. J. Pindera, and S. M.Arnold, “High-fidelity generalized method of cells for inelastic periodic multiphase materials,” NASA Contractor Report TM-2002-211469 (2002).

  23. J. Aboudi, “Micromechanical analysis of fully coupled electro-magneto-thermo-elastic multiphase composites,” Smart Mater. Struct., 10, 867-877 (2001).

    Article  Google Scholar 

  24. K. ** and J. Aboudi, “Macroscopic behavior prediction of multiferroic composites,” Int. J. Eng. Sci., 94, 226-241 (2015).

    Article  Google Scholar 

  25. J. Aboudi, “Micromechanical prediction of the effective behavior of fully coupled electro-magneto-thermo-elasti multiphase composites,” NASA Contractor Report CR-2000-209787 (2000).

  26. J. Aboudi Micromechanical Analyses of Smart Composite Materials, New York: Nova Science Publ.; 2007.

  27. Q. Chen, X. F. Chen, Z. Zhai, and Z. B. Yang, “A new and general formulation of three-dimensional finite-volume micromechanics for particulate reinforced composites with viscoplastic phases,” Compos. Part B-Eng., 85, 216-232, 2016.

    Article  Google Scholar 

  28. Y. Y. Qiu, Y. M. He, J. Ma, X. L. Zhang, and C.L. Huang, “Studying the nonlinear properties and strain-rate sensitivity of SiC short fiber-reinforced Al matrix composites,” Sci. Eng. Compos. Mater., 2015.

  29. T. Tang and W. Yu, “Micromechanical modeling of multiphysical behaviors of smart materials using variational asymptotic method,” Smart Mater. Sturct., 18, 125026-125040 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51675397, 51505364) and Fundamental Research Funds for the Central Universities (JB150402).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. J. Ye or Y. K. Wang.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 54, No. 1, pp. 37-50, January-February, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, J.J., Chu, C.C., Wang, Y.K. et al. A Micromechanical Method for the Analysis of Three-Dimensional Smart Composites. Mech Compos Mater 54, 23–32 (2018). https://doi.org/10.1007/s11029-018-9714-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-018-9714-z

Keywords

Navigation