Log in

Chiral polyanilines: synthesis, chirality influencing parameters and applications

  • REVIEW PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Recently supramolecular chirality has received increasing interest due to its potential applications in enantioselective sensors and chromatographic separation of enantiomers. The appearance of such chirality results from the helical organization of molecules manifested by H-bonding interactions, weak van der Waals forces, and electrostatic forces. In recent years a lot of interest has been focused towards the synthesis of chiral conjugated polymers such as polyacetylene, polythiophene, polypyrrole, polyaniline (PANI), and poly(p-phenylene vinylene) due to their potential applications in circularly polarized electroluminescence and chiral electrode for asymmetric synthesis. Among these chiral PANI is desirable because it is inexpensive, environmentally stable, and can be readily doped and dedoped using simple acid–base stimuli. Besides PANI does not require any synthetic steps before the polymerization of achiral aniline and totally relies on the preferential formation of either right- or left-handed helix of the polymer backbone due to the presence of a chiral dopant in the reaction medium. Different types of chiral acids have been used for the creation of helical polyaniline using different methods. This review paper presents a detailed discussion of different methods of synthesizing helical/chiral polyaniline, different types of dopants used for chirality induction, chirality measurement by circular dichroism spectroscopy, parameters controlling induction and stabilization of chirality in PANI, and application of chiral polyanilines in diverse areas such as enantiomer separation, enantioselective synthesis, chiral nanocomposites, and microwave absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Skolnick J, Zhou H, Gao M (2019) On the possible origin of protein homochirality, structure, and biochemical function. Proc Natl Acad Sci U S A 116:26571–26579. https://doi.org/10.1073/pnas.1908241116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. DNA, genes and chromosomes—University of Leicester. https://www2.le.ac.uk/projects/vgec/schoolsandcolleges/topics/dnageneschromosomes. Accessed 22 Mar 2021

  3. Protein Structure Amino Acid Biology, PNG, 1143x946px, Watercolor, Cartoon, Flower, Frame, Heart Download Free. https://favpng.com/png_view/proteins-cliparts-protein-structure-amino-acid-biology-png/Sxdtxg67. Accessed 22 Mar 2021

  4. Fireman-Shoresh S, Popov I, Avnir D, Marx S (2005) Enantioselective, chirally templated sol-gel thin films. J Am Chem Soc 127:2650–2655. https://doi.org/10.1021/ja0454384

    Article  CAS  PubMed  Google Scholar 

  5. Niu X, Yang X, Li H et al (2020) Application of chiral materials in electrochemical sensors. Microchim Acta 187:1–18. https://doi.org/10.1007/s00604-020-04646-4

    Article  CAS  Google Scholar 

  6. Zhang Y, Huang H, Zhao B, Deng J (2018) Preparation and applications of chiral polymeric particles. Isr J Chem 58:1286–1298. https://doi.org/10.1002/ijch.201800023

    Article  CAS  Google Scholar 

  7. Narcis MJ, Takenaka N (2014) Helical-chiral small molecules in asymmetric catalysis. European J Org Chem 2014:21–34. https://doi.org/10.1002/ejoc.201301045

    Article  CAS  Google Scholar 

  8. Blaser HU (2013) Chirality and its implications for the pharmaceutical industry. Rend Lincei 24:213–216. https://doi.org/10.1007/s12210-012-0220-2

    Article  Google Scholar 

  9. Ha PTT, Hoogmartens J, Van Schepdael A (2006) Recent advances in pharmaceutical applications of chiral capillary electrophoresis. J Pharm Biomed Anal 41:1–11. https://doi.org/10.1016/j.jpba.2006.01.035

    Article  CAS  PubMed  Google Scholar 

  10. Brooks WH, Guida WC, Daniel KG (2011) The significance of chirality in drug design and development. Curr Top Med Chem 11:760. https://doi.org/10.2174/156802611795165098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ma W, Xu L, Wang L et al (2019) Chirality-based biosensors. Adv Funct Mater 29:1805512. https://doi.org/10.1002/adfm.201805512

    Article  CAS  Google Scholar 

  12. Brandt JR, Salerno F, Fuchter MJ (2017) The added value of small-molecule chirality in technological applications. Nat Rev Chem 1:1–12. https://doi.org/10.1038/s41570-017-0045

    Article  CAS  Google Scholar 

  13. Kim H, Im SW, Kim RM et al (2020) Chirality control of inorganic materials and metals by peptides or amino acids. Mater Adv 1:512–524. https://doi.org/10.1039/d0ma00125b

    Article  CAS  Google Scholar 

  14. Suraj Koorpet R, Akshay N, Nishanth G et al (2020) A review on chiral columns/stationary phases for HPLC. Int J Res Pharm Sci 11:2466–2480. https://doi.org/10.26452/ijrps.v11i2.2240

    Article  CAS  Google Scholar 

  15. Teixeira J, Tiritan ME, Pinto MMM, Fernandes C (2019) Chiral stationary phases for liquid chromatography: recent developments. Molecules. https://doi.org/10.3390/molecules24050865

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yang Y, Liang J, Pan F et al (2018) Macroscopic helical chirality and self-motion of hierarchical self-assemblies induced by enantiomeric small molecules. Nat Commun 9:1–8. https://doi.org/10.1038/s41467-018-06239-5

    Article  CAS  Google Scholar 

  17. Ulbricht TLV (1975) Chirality and the origin of life. Nature 258:383–384. https://doi.org/10.1038/258383a0

    Article  Google Scholar 

  18. Feng H, Lv W, Ma J et al (2020) Helical structures with switchable and hierarchical chirality. Appl Phys Lett 116:194102. https://doi.org/10.1063/5.0005336

    Article  CAS  Google Scholar 

  19. Cornelissen JJLM, Rowan AE, Nolte RJM, Sommerdijk NAJM (2001) Chiral architectures from macromolecular building blocks. Chem Rev 101:4039–4070. https://doi.org/10.1021/cr990126i

    Article  CAS  PubMed  Google Scholar 

  20. Pijper D, Feringa BL (2008) Control of dynamic helicity at the macro-and supramolecular level. Soft Matter 4:1349–1372. https://doi.org/10.1039/b801886c

    Article  CAS  PubMed  Google Scholar 

  21. Salikolimi K, Praveen VK, Sudhakar AA et al (2020) Helical supramolecular polymers with rationally designed binding sites for chiral guest recognition. Nat Commun 11:1–12. https://doi.org/10.1038/s41467-020-16127-6

    Article  CAS  Google Scholar 

  22. Zhou K, Tong L, Deng J, Yang W (2010) Hollow polymeric microspheres grafted with optically active helical polymer chains: Preparation and their chiral recognition ability. J Mater Chem 20:781–789. https://doi.org/10.1039/b918132f

    Article  CAS  Google Scholar 

  23. Huang J, Virji S, Weiller BH, Kaner RB (2003) Polyaniline nanofibers: Facile synthesis and chemical sensors. J Am Chem Soc 125:314–315. https://doi.org/10.1021/ja028371y

    Article  CAS  PubMed  Google Scholar 

  24. Kaniewska M, Sikora T, Kataky R, Trojanowicz M (2008) Enantioselectivity of potentiometric sensors with application of different mechanisms of chiral discrimination. J Biochem Biophys Methods 70:1261–1267. https://doi.org/10.1016/j.jbbm.2007.09.006

    Article  CAS  PubMed  Google Scholar 

  25. Mogi I, Watanabe K (2007) Electrocatalytic chirality on magneto-electropolymerized polyaniline electrodes. J Solid State Electrochem 11:751–756. https://doi.org/10.1007/s10008-006-0191-2

    Article  CAS  Google Scholar 

  26. Pleus S, Schwientek M (1998) Enantioselective electrodes: Synthesis and use of polypyrroles prepared from chiral pyrrole derivatives. Synth Met 95:233–238. https://doi.org/10.1016/s0379-6779(98)00063-0

    Article  CAS  Google Scholar 

  27. Pleus S, Schwientek M (1997) Design of chiral poly(pyrroles). Synth Commun 27:2917–2930. https://doi.org/10.1080/00397919708004998

    Article  CAS  Google Scholar 

  28. Salmón M, Saloma M, Bidan G, Genies EM (1989) Route to chemically modified chiral electrodes: synthesis and properties of optically active pyrrole monomers. Electrochim Acta 34:117–120. https://doi.org/10.1016/0013-4686(89)87075-6

    Article  Google Scholar 

  29. Yashima E, Huang S, Okamoto Y (1994) An optically active stereoregular polyphenylacetylene derivative as a novel chiral stationary phase for HPLC. J Chem Soc Chem Commun. https://doi.org/10.1039/C39940001811

    Article  Google Scholar 

  30. Chen ZD, Wei JX, Wang WC, Kong Y (2010) Separation of tryptophan enantiomers with molecularly imprinted polypyrrole electrode column. Chinese Chem Lett 21:353–356. https://doi.org/10.1016/j.cclet.2009.11.044

    Article  CAS  Google Scholar 

  31. Moutet J-C, Saintl-Aman E, Tran-Van F et al (1992) Poly(glucose-pyrrole) modified electrodes: a novel chiral electrode for enantioselective recognition. Adv Mater 4:511–513. https://doi.org/10.1002/adma.19920040715

    Article  CAS  Google Scholar 

  32. Sun GC, Yao KL, Liao HX et al (2000) Microwave absorption characteristics of chiral materials with Fe3O4-polyaniline composite matrix. Int J Electron 87:735–740. https://doi.org/10.1080/002072100131922

    Article  CAS  Google Scholar 

  33. Guo H, Knobler CM, Kaner RB (1999) A chiral recognition polymer based on polyaniline. Synth Met 101:44–47. https://doi.org/10.1016/s0379-6779(98)00301-4

    Article  CAS  Google Scholar 

  34. Akagi K, Mori T (2008) Helical polyacetylene-origins and synthesis. Chem Rec 8:395–406. https://doi.org/10.1002/tcr.20163

    Article  CAS  PubMed  Google Scholar 

  35. Yashima E (2002) Chiral and chirality discrimination on helical polyacetylenes. Anal Sci 18:3–6. https://doi.org/10.2116/analsci.18.3

    Article  CAS  Google Scholar 

  36. Yashima E, Maeda K, Iida H et al (2010) ChemInform abstract: helical polymers: synthesis, structures, and functions. ChemInform 41:6102–6211. https://doi.org/10.1002/chin.201013278

    Article  Google Scholar 

  37. Zhou Y, Yu B, Zhu G (1997) Electropolymeric generation of optically active polypyrrole. Polymer (Guildf) 38:5493–5495. https://doi.org/10.1016/S0032-3861(97)00206-1

    Article  CAS  Google Scholar 

  38. Han G, Shi G, Yuan J, Chen F (2004) Electrochemical growth of aligned N-chiral alkyl substituted polypyrrole micro-ribbons. J Mater Sci 39:4451–4457. https://doi.org/10.1023/b:jmsc.0000034137.82383.47

    Article  CAS  Google Scholar 

  39. Chen F, Akhtar P, Kane-Maguire LAP, Wallace GG (1997) Synthesis and characterization of chiral conducting polymers based on polypyrrole. Aust J Chem 50:939–945. https://doi.org/10.1071/C96189

    Article  CAS  Google Scholar 

  40. Gamier DDF (1990) Chiral metals: amino acid-substituted conducting polypyrroles. Synth Met 39:329–334. https://doi.org/10.1515/cclm.1993.31.5.329

    Article  Google Scholar 

  41. Kotkar D, Joshi V, Ghosh PK (1988) Towards chiral metals. Synthesis of chiral conducting polymers from optically active thiophene and pyrrole derivatives. J Chem Soc Chem Commun. https://doi.org/10.1039/C39880000917

    Article  Google Scholar 

  42. Lemaire M, Delabouglise D, Garreau R et al (1988) Enantioselective chiral poly(thiophenes). J Chem Soc Chem Commun. https://doi.org/10.1039/C39880000658

    Article  Google Scholar 

  43. Yashima E, Goto H, Okamoto Y (1999) Metal-induced chirality induction and chiral recognition of optically active, regioregular polythiophenes. Macromolecules 32:7942–7945. https://doi.org/10.1021/ma9912305

    Article  CAS  Google Scholar 

  44. Majidi MR, Kane-Maguire LAP, Wallace GG (1995) Chemical generation of optically active polyaniline via the do** of emeraldine base with (+)- or (−)-camphorsulfonic acid. Polymer (Guildf) 36:3597–3599. https://doi.org/10.1016/0032-3861(95)92034-C

    Article  CAS  Google Scholar 

  45. Kane-Maguire LAP, MacDiarmid AG, Norris ID et al (1999) Facile preparation of optically active polyanilines via the in situ chemical oxidative polymerization of aniline. Synth Met 106:171–176. https://doi.org/10.1016/S0379-6779(99)00139-3

    Article  CAS  Google Scholar 

  46. Fiesel R, Scherf U (1998) Aggregation-induced CD effects in chiral poly(2,5-dialkoxy-1,4-phenylene)s. Acta Polym 49:445–449. https://doi.org/10.1002/(sici)1521-4044(199808)49:8%3c445::aid-apol445%3e3.3.co;2-d

    Article  CAS  Google Scholar 

  47. Fiesel R, Neher D, Scherf U (1999) On the solid-state aggregation of chiral substituted poly(para-phenylene)s (PPPs). Synth Met 102:1457–1458. https://doi.org/10.1016/S0379-6779(98)00517-7

    Article  CAS  Google Scholar 

  48. Nakagawa K, Tomita I (2007) Synthesis of poly(p-phenylene-vinylene) with chiral higher-order structure from simple monomers by three-component coupling polymerization. Macromolecules 40:9212–9216. https://doi.org/10.1021/ma0716579

    Article  CAS  Google Scholar 

  49. Peeters E, Janssen RAJ, Meijer EW (1999) Effect of intrachain order on the chiroptical properties of chiral poly(p-phenylene vinylenes). Synth Met 102:1105–1106. https://doi.org/10.1016/S0379-6779(98)01388-5

    Article  CAS  Google Scholar 

  50. Satrijo A, Swager TM (2005) Facile control of chiral packing in poly(p-phenylenevinylene) spin-cast films. Macromolecules 38:4054–4057. https://doi.org/10.1021/ma047418s

    Article  CAS  Google Scholar 

  51. Kamer PCJ, Nolte RJM, Drenth W, Nolle JM (1988) Screw sense selective polymerization of achiral isocyanides catalyzed by optically active nickel(II) complexes. J Am Chem Soc 110:6818–6825. https://doi.org/10.1021/ja00228a035

    Article  CAS  Google Scholar 

  52. Green MM, Weng D, Shang W, Labes MM (1992) An unusual interplay between macromolecular and supramolecular helicity in polyisocyanates dissolved in a chiral liquid crystal. Angew Chemie Int Ed English 31:88–90. https://doi.org/10.1002/anie.199200881

    Article  Google Scholar 

  53. Nakano T, Okamoto Y, Hatada K (1992) Asymmetric polymerization of triphenylmethyl methacrylate leading to a one-handed helical polymer: mechanism of polymerization. J Am Chem Soc 114:1318–1329. https://doi.org/10.1021/ja00030a030

    Article  CAS  Google Scholar 

  54. Ute K, Hirose K, Kashimoto H et al (1991) Helix-sense reversal of isotactic chloral oligomers in solution. J Am Chem Soc 113:6305–6306. https://doi.org/10.1021/ja00016a076

    Article  CAS  Google Scholar 

  55. Majidi MR, Kane-Maguire LAP, Wallace GG (1994) Enantioselective electropolymerization of aniline in the presence of (+)- or (−)-camphorsulfonate ion: a facile route to conducting polymers with preferred one-screw-sense helicity. Polymer (Guildf) 35:3113–3115. https://doi.org/10.1016/0032-3861(94)90427-8

    Article  CAS  Google Scholar 

  56. Coltevieille D, Le Méhauté A, Challioui C et al (1999) Industrial application of polyaniline. Synth Met 101:703–704. https://doi.org/10.1016/S0379-6779(98)01093-5

    Article  Google Scholar 

  57. Huang J, Egan VM, Guo H et al (2003) Enantioselective discrimination of D-and L-phenylalanine by chiral polyaniline thin films. Adv Mater 15:1158–1161. https://doi.org/10.1002/adma.200304835

    Article  CAS  Google Scholar 

  58. Yang Y, Wan M (2002) Chiral nanotubes of polyaniline synthesized by a template-free method. J Mater Chem 12:897–901. https://doi.org/10.1039/b107384m

    Article  CAS  Google Scholar 

  59. Li J, Zhu L, Luo W et al (2007) Correlation between one-directional helical growth of polyaniline and its optical activity. J Phys Chem C 111:8383–8388. https://doi.org/10.1021/jp068910b

    Article  CAS  Google Scholar 

  60. Yan Y, Yu Z, Huang Y et al (2007) Helical polyaniline nanofibers induced by chiral dopants by a polymerization process. Adv Mater 19:3353–3357. https://doi.org/10.1002/adma.200700846

    Article  CAS  Google Scholar 

  61. Zhang L, Wan M (2005) Chiral polyaniline nanotubes synthesized via a self-assembly process. Thin Solid Films 477:24–31. https://doi.org/10.1016/j.tsf.2004.08.106

    Article  CAS  Google Scholar 

  62. Su SJ, Kuramoto N (2001) Optically active polyaniline derivatives prepared by electron acceptor in organic system: Chiroptical properties. Macromolecules 34:7249–7256. https://doi.org/10.1021/ma010747p

    Article  CAS  Google Scholar 

  63. Su SJ, Kuramoto N (2001) A novel strategy for synthesis of optically active polyanilines in organic system. Chem Lett. https://doi.org/10.1246/cl.2001.504

    Article  Google Scholar 

  64. Su SJ, Kuramoto N (2001) In situ synthesis of optically active poly(o-ethoxyaniline) in organic media and its chiroptical properties. Chem Mater 13:4787–4793. https://doi.org/10.1021/cm010663v

    Article  CAS  Google Scholar 

  65. Su SJ, Takeishi M, Kuramoto N (2002) Helix inversion of polyaniline by introducing o-toluidine units. Macromolecules 35:5752–5757. https://doi.org/10.1021/ma0202742

    Article  CAS  Google Scholar 

  66. Hino T, Kumakura T, Kuramoto N (2006) Optically active fluoro-substituted polyaniline prepared in organic media: The synthesis, chiroptical properties, and comparison with optically active non-substituted polyaniline. Polymer (Guildf) 47:5295–5302. https://doi.org/10.1016/j.polymer.2006.04.066

    Article  CAS  Google Scholar 

  67. Havinga EE, Bouman MM, Meijer EW et al (1994) Large induced optical activity in the conduction band of polyaniline doped with (1S)-(+)-10-camphorsulfonic acid. Synth Met 66:93–97. https://doi.org/10.1016/0379-6779(94)90168-6

    Article  CAS  Google Scholar 

  68. Ashraf SA, Kane-Maguire LAP, Majidi MR et al (1997) Influence of the chiral dopant anion on the generation of induced optical activity in polyanilines. Polymer (Guildf) 38:2627–2631. https://doi.org/10.1016/S0032-3861(97)85595-4

    Article  CAS  Google Scholar 

  69. Majidi MR, Kane-Maguire LAP, Wallace GGG (1996) Facile synthesis of optically active polyaniline and polytoluidine. Polymer (Guildf) 37:359–362. https://doi.org/10.1016/0032-3861(96)81111-6

    Article  CAS  Google Scholar 

  70. Noskov Y, Sorochinsky A, Kukhar V, Pud A (2019) Polyaniline do** by α, α-difluoro-β-amino acids. ACS Omega 4:7400–7410. https://doi.org/10.1021/acsomega.9b00207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Reece DA, Kane-Maguire LAP, Wallace GG (2001) Polyanilines with a twist. Synth Met 119:101–102. https://doi.org/10.1016/S0379-6779(00)00943-7

    Article  CAS  Google Scholar 

  72. Chen J, Winther-Jensen B, Pornputtkul Y et al (2006) Synthesis of chiral polyaniline films via chemical vapor phase polymerization. Electrochem Solid-State Lett. https://doi.org/10.1149/1.2136247

    Article  Google Scholar 

  73. Nagarajan R, Liu W, Kumar J et al (2001) Manipulating DNA conformation using intertwined conducting polymer chains. Macromolecules 34:3921–3927. https://doi.org/10.1021/ma0021287

    Article  CAS  Google Scholar 

  74. Yuan GL, Kuramoto N (2002) Chemical synthesis of optically active polyaniline in the presence of dextran sulfate as molecular template. Chem Lett. https://doi.org/10.1246/cl.2002.544

    Article  Google Scholar 

  75. Yuan GL, Kuramoto N (2002) Water-processable chiral polyaniline derivatives doped and intertwined with dextran sulfate: Synthesis and chiroptical properties. Macromolecules 35:9773–9779. https://doi.org/10.1021/ma0209139

    Article  CAS  Google Scholar 

  76. Yuan GL, Kuramoto N (2003) Synthesis and chiroptical properties of optically active poly(N-alkylanilines) doped and intertwined with dextran sulfate in aqueous solution. Macromolecules 36:7939–7945. https://doi.org/10.1021/ma030087j

    Article  CAS  Google Scholar 

  77. Jia B, Hino T, Kuramoto N (2007) Synthesis and chiroptical properties of water-processable polyaniline using methylcellulose as a molecular template. React Funct Polym 67:836–843. https://doi.org/10.1016/j.reactfunctpolym.2007.01.005

    Article  CAS  Google Scholar 

  78. Yuan GL, Kuramoto N (2004) Synthesis of helical polyanilines using chondroitin sulfate as a molecular template. Macromol Chem Phys 205:1744–1751. https://doi.org/10.1002/macp.200400184

    Article  CAS  Google Scholar 

  79. Moriuchi T, Shen X, Hirao T (2006) Chirality induction of π-conjugated chains through chiral complexation. Tetrahedron 62:12237–12246. https://doi.org/10.1016/j.tet.2006.10.016

    Article  CAS  Google Scholar 

  80. McCarthy PA, Huang J, Yang SC, Wang HL (2002) Synthesis and characterization of water-soluble chiral conducting polymer nanocomposites. Langmuir 18:259–263. https://doi.org/10.1021/la0111093

    Article  CAS  Google Scholar 

  81. Li W, McCarthy PA, Liu D et al (2002) Toward understanding and optimizing the template-guided synthesis of chiral polyaniline nanocomposites. Macromolecules 35:9975–9982. https://doi.org/10.1021/ma020915t

    Article  CAS  Google Scholar 

  82. Thiyagarajan M, Samuelson LA, Kumar J, Cholli AL (2003) Helical conformational specificity of enzymatically synthesized water-soluble conducting polyaniline nanocomposites. J Am Chem Soc 125:11502–11503. https://doi.org/10.1021/ja035414h

    Article  CAS  PubMed  Google Scholar 

  83. Yang L, Cao W (2006) Robust macroporous materials of chiral polyaniline composites. Chem Mater 18:297–300. https://doi.org/10.1021/cm051410v

    Article  CAS  Google Scholar 

  84. Lee KP, Gopalan AI, Lee SH, Kim MS (2006) Polyaniline and cyclodextrin based chiral nanobundles—functional materials having size and enantioselectivity. Nanotechnology 17:375–380. https://doi.org/10.1088/0957-4484/17/2/005

    Article  CAS  Google Scholar 

  85. Li W, Wang HL (2004) Oligomer-assisted synthesis of chiral polyaniline nanofibers. J Am Chem Soc 126:2278–2279. https://doi.org/10.1021/ja039672q

    Article  CAS  PubMed  Google Scholar 

  86. Li W, Bailey JA, Wang HL (2006) Toward optimizing synthesis of nanostructured chiral polyaniline. Polymer (Guildf) 47:3112–3118. https://doi.org/10.1016/j.polymer.2006.01.070

    Article  CAS  Google Scholar 

  87. Bodner M, Espe MP (2003) Induced optical activity in polyaniline: Solvent and acid dependence. Synth Met 135–136:403–404. https://doi.org/10.1016/S0379-6779(02)00658-6

    Article  CAS  Google Scholar 

  88. Li Y, Wang B, Feng W (2009) Chiral polyaniline with flaky, spherical and urchin-like morphologies synthesized in the l-phenylalanine saturated solutions. Synth Met 159:1597–1602. https://doi.org/10.1016/j.synthmet.2009.04.023

    Article  CAS  Google Scholar 

  89. Yuan GL, Kuramoto N (2003) Helical polyaniline induced by specific interaction with biomolecules in neutral solution. Polymer (Guildf) 44:5501–5504. https://doi.org/10.1016/S0032-3861(03)00503-2

    Article  CAS  Google Scholar 

  90. Corrêa D, Ramos C (2009) The use of circular dichroism spectroscopy to study protein folding, form and function. In: African J Biochem Res. http://www.academicjournals.org/AJBR/PDF/Pdf2009/May/Special Issue/Corrêa and Ramos.pdf. Accessed 22 Mar 2021

  91. Greenfield NJ (2007) Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc 1:2876–2890. https://doi.org/10.1038/nprot.2006.202

    Article  CAS  Google Scholar 

  92. Wei Y, Thyparambil AA, Latour RA (2014) Protein helical structure determination using CD spectroscopy for solutions with strong background absorbance from 190 to 230 nm. Biochim Biophys Acta - Proteins Proteomics 1844:2331–2337. https://doi.org/10.1016/j.bbapap.2014.10.001

    Article  CAS  Google Scholar 

  93. Applied Photophysics Limited (2019) Beyond α-helix and β-sheet: the expanding role of circular dichroism section 1 the changing role of CD Analysis section 2 protein secondary and tertiary structure in focus. https://www.photophysics.com/media/n3sb1d3s/the-expanding-role-of-circular-dichroism-white-paperv2.pdf

  94. Kelly SM, Price NC (2000) The use of circular dichroism in the investigation of protein structure and function. Curr Protein Pept Sci 1:349–384. https://doi.org/10.2174/1389203003381315

    Article  CAS  PubMed  Google Scholar 

  95. Kondo A, Murakami F, Higashitani K (1992) Circular dichroism studies on conformational changes in protein molecules upon adsorption on ultrafine polystyrene particles. Biotechnol Bioeng 40:889–894. https://doi.org/10.1002/bit.260400804

    Article  CAS  PubMed  Google Scholar 

  96. Kessenbrock M, Groth G (2017) Circular dichroism and fluorescence spectroscopy to study protein structure and protein-protein interactions in ethylene signaling. Methods in molecular biology. Humana Press Inc., pp 141–159. https://doi.org/10.1007/978-1-4939-6854-1_12

    Chapter  Google Scholar 

  97. Chang Y-M, Chen CK-M, Hou M-H (2012) Conformational changes in DNA upon ligand binding monitored by circular dichroism. Int J Mol Sci 13:3394–3413. https://doi.org/10.3390/ijms13033394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Circular Dichroism of Protein-Dye Complexes as a Characterization Tool for Protein Higher Order Structures | Blue Stream Laboratories | Enhanced Reader. Accessed 22 Mar 2021

  99. Sudha KD, Iwamoto M (2013) Investigation of the chiroptical behavior of optically active polyaniline synthesized from naturally occurring amino acids. Polym J 45:160–165. https://doi.org/10.1038/pj.2012.127

    Article  CAS  Google Scholar 

  100. Majidi MR, Ashraf SA, Kane-Maguire LAP et al (1997) Factors controlling the induction of optical activity in chiral polyanilines. Synth Met 84:115–116. https://doi.org/10.1016/S0379-6779(97)80672-8

    Article  CAS  Google Scholar 

  101. Norris ID, Kane-Maguire LAP, Wallace GG (1998) Thermochromism in optically active polyaniline salts. Macromolecules 31:6529–6533. https://doi.org/10.1021/ma971832t

    Article  CAS  Google Scholar 

  102. Egan V, Bernstein R, Hohmann L et al (2001) Influence of water on the chirality of camphorsulfonic acid-doped polyaniline. Chem Commun. https://doi.org/10.1039/b008996f

    Article  Google Scholar 

  103. Gübitz G, Schmid MG (2006) Chiral separation principles in chromatographic and electromigration techniques. Mol Biotechnol 32:159–179. https://doi.org/10.1385/MB:32:2:159

    Article  PubMed  Google Scholar 

  104. Ward TJ, Baker BA (2008) Chiral separations. Anal Chem 80:4363–4372. https://doi.org/10.1021/ac800662y

    Article  CAS  PubMed  Google Scholar 

  105. Bruno R, Marino N, Bartella L et al (2018) Highly efficient temperature-dependent chiral separation with a nucleotide-based coordination polymer. Chem Commun 54:6356–6359. https://doi.org/10.1039/c8cc03544j

    Article  CAS  Google Scholar 

  106. Das S, Xu S, Ben T, Qiu S (2018) Chiral recognition and separation by chirality-enriched metal-organic frameworks. Angew Chemie Int Ed 57:8629–8633. https://doi.org/10.1002/anie.201804383

    Article  CAS  Google Scholar 

  107. Navarro-Sánchez J, Argente-García AI, Moliner-Martínez Y et al (2017) Peptide metal-organic frameworks for enantioselective separation of chiral drugs. J Am Chem Soc 139:4294–4297. https://doi.org/10.1021/jacs.7b00280

    Article  CAS  PubMed  Google Scholar 

  108. Sheridan EM, Breslin CB (2005) Enantioselective detection of D- and L-phenylalanine using optically active polyaniline. Electroanalysis 17:532–537. https://doi.org/10.1002/elan.200403192

    Article  CAS  Google Scholar 

  109. Kaner RB (2001) Gas, liquid and enantiomeric separations using polyaniline. Synth Met 125:65–71. https://doi.org/10.1016/S0379-6779(01)00512-4

    Article  Google Scholar 

  110. Zhou C, Ren Y, Han J et al (2019) Chiral polyaniline hollow nanotwists toward efficient enantioselective separation of amino acids. ACS Nano 13:3534–3544. https://doi.org/10.1021/acsnano.8b09784

    Article  CAS  PubMed  Google Scholar 

  111. Yang Q, Yang C, Sun K et al (2018) Synthesis and application of chiral polyaniline/silica dioxide core/shell composite. Gaodeng Xuexiao Huaxue Xuebao/Chem J Chin Univ 39:1587–1591. https://doi.org/10.7503/cjcu20170743

    Article  CAS  Google Scholar 

  112. Varadan VV, Lakhtakia A, Varadan VK (1988) Equivalent dipole moments of helical arrangements of small, isotropic, point-polarizable scatters: application to chiral polymer design. J Appl Phys 63:280–284. https://doi.org/10.1063/1.340289

    Article  CAS  Google Scholar 

  113. Tian X, Meng F, Meng F et al (2017) Synergistic enhancement of microwave absorption using hybridized polyaniline@helical CNTs with dual chirality. ACS Appl Mater Interfaces 9:15711–15718. https://doi.org/10.1021/acsami.7b02607

    Article  CAS  PubMed  Google Scholar 

  114. Li X, Yu L, Yu L et al (2018) Chiral polyaniline with superhelical structures for enhancement in microwave absorption. Chem Eng J 352:745–755. https://doi.org/10.1016/j.cej.2018.07.096

    Article  CAS  Google Scholar 

  115. Xu F, Ma L, Gan M et al (2014) Preparation and characterization of chiral polyaniline/barium hexaferrite composite with enhanced microwave absorbing properties. J Alloys Compd 593:24–29. https://doi.org/10.1016/j.jallcom.2014.01.032

    Article  CAS  Google Scholar 

  116. Yin X, Ding J, Zhang S, Kong J (2006) Enantioselective sensing of chiral amino acids by potentiometric sensors based on optical active polyaniline films. Biosens Bioelectron 21:2184–2187. https://doi.org/10.1016/j.bios.2005.10.010

    Article  CAS  PubMed  Google Scholar 

  117. Pornputtkul Y, Kane-Maguire LAP, Innis PC, Wallace GG (2005) Asymmetric proliferation with optically active polyanilines. Chem Commun. https://doi.org/10.1039/b508286m

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to express their gratitude to the Director, Defence Research Laboratory, for giving permission to publish this article and Dr. I. M. Umlong to review this article. All figures are created with ChemBioDraw Ultra 14.0.

Author information

Authors and Affiliations

Authors

Contributions

RD conceptualized, DD wrote, and PC edited the article.

Corresponding author

Correspondence to Rama Dubey.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubey, R., Dutta, D. & Chattopadhyay, P. Chiral polyanilines: synthesis, chirality influencing parameters and applications. Polym. Bull. 81, 8547–8571 (2024). https://doi.org/10.1007/s00289-023-05060-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-05060-5

Keywords

Navigation