Log in

The synthesis and characterization of helical polyaniline in the liquid crystal

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The helical polyaniline (PANI) was synthesized through introducing the chiral chemical D-camphor-10-sulfonic acid (D-CSA) into the liquid crystal, which resulted in the typical conical texture of lamellar phase pattern, owing to the reorientation and rearrangement of liquid crystal. The morphology and the structures of helical PANI were characterized through TEM, Uv-vis, FTIR and XRD, and the influence of the factors such as the amount of D-CSA, stirring, the strength of the electric field on PANI was investigated. Besides, according to the electrochemical data of helical PANI, it was obtained the capacitance of helical PANI synthesized in the presence of electric field was higher, compared with other samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Kazemi F, Naghib SM, Mohammadpour Z (2020) Multifunctional micro-/nanoscaled structures based on polyaniline: an overview of modern emerging devices. Mater Today Chem 16:100249. https://doi.org/10.1016/j.mtchem.2020.100249

    Article  CAS  Google Scholar 

  2. Jangid NK, Jadoun S, Kaur N (2020) A review on high-throughput synthesis, deposition of thin films and properties of polyaniline. Eur Polym J 125:109485. https://doi.org/10.1016/j.eurpolymj.2020.109485

    Article  CAS  Google Scholar 

  3. Shoaie N, Daneshpour M, Azimzadeh M, Mahshid S, Khoshfetrat SM, Jahanpeyma F, Gholaminejad A, Omidfar K, Foruzandeh M (2019) Electrochemical sensors and biosensors based on the use of polyaniline and its nanocomposites: a review on recent advances. Mikrochim Acta 186:465. https://doi.org/10.1007/s00604-019-3588-1

    Article  CAS  PubMed  Google Scholar 

  4. Nazarzadeh ZE, Pooyan M, Behnaz A, Filippo R, Ahmad M, Giuseppe P (2020) Progress in conductive polyaniline-based nanocomposites for biomedical applications: a review. J Med Chem 63:1–22. https://doi.org/10.1021/acs.jmedchem.9b00803

    Article  CAS  Google Scholar 

  5. Liu S, Liu L, Li Y, Wang F (2020) Effects of N-alkylation on anticorrosion performance of doped polyaniline/epoxy coating. J Mater Sci Technol 39:48–55. https://doi.org/10.1016/j.jmst.2019.06.012

    Article  Google Scholar 

  6. Eskandari E, Kosari M, Farahani MHDA, Khiavi ND, Saeedikhani M, Katal R, Zarinejad M (2020) A review on polyaniline-based materials applications in heavy metals removal and catalytic processes. Sep Purif Technol 231:115901. https://doi.org/10.1016/j.seppur.2019.115901

    Article  CAS  Google Scholar 

  7. Acharya S, Sahoo S, Sonal S, Lee J, Mishra B, Nayak GC (2020) Adsorbed Cr(VI) based activated carbon/polyaniline nanocomposite: a superior electrode material for asymmetric supercapacitor device. Composites Part B 193:107913. https://doi.org/10.1016/j.compositesb

    Article  CAS  Google Scholar 

  8. Cionti C, Pina CD, Meroni D, Falletta E, Ardizzone S (2020) Photocatalytic and oxidative synthetic pathways for highly efficient PANI-TiO2 nanocomposites as organic and inorganic pollutant sorbents. Nanomaterials 10:441. https://doi.org/10.3390/nano10030441

    Article  CAS  PubMed Central  Google Scholar 

  9. Reddy KR, Karthik KV, Prasad SBB, Soni SK, Jeong HM, Raghu AV (2016) Enhanced photocatalytic activity of nanostructured titanium dioxide/polyaniline hybrid photocatalysts. Polyhedrons 120:169. https://doi.org/10.1016/j.poly.2016.08.029

    Article  CAS  Google Scholar 

  10. Dakshayini BS, Reddy KR, Mishra A, Shetti NP, Malode SJ, Basu S, Naveen S, Raghu AV (2016) Role of conducting polymer and metal oxide-based hybrids for applications in ampereometric sensors and biosensors. Microchem J 147:7–24. https://doi.org/10.1016/j.microc.2019.02.061

    Article  CAS  Google Scholar 

  11. Wang G, Vivek R, Wang JY (2017) Polyaniline nanoparticles: synthesis, dispersion and biomedical applications. Mini-Rev Org Chem 14:56–64. https://doi.org/10.2174/1570193X14666161118114230

    Article  CAS  Google Scholar 

  12. Tanguy NR, Thompson M, Yan N (2018) A review on advances in application of polyaniline for ammonia detection. Sens Actuators B 257:1044–1064. https://doi.org/10.1016/j.snb.2017.11.008

    Article  CAS  Google Scholar 

  13. Antony MJ, Jolly CA, Das KR, Swathy TS (2019) Normal and reverse AOT micelles assisted interfacial polymerization for polyaniline nanostructures. Colloids Surf A 578:123627. https://doi.org/10.1016/j.colsurfa.2019.123627

    Article  CAS  Google Scholar 

  14. Wang R, Han Q, Lu L, Wu X, Bei F (2017) Nucleation of polyaniline microspheres and interconnected nanostructures from strongly coupled micelle-like systems. J Phys Chem C 121(51):28506–28514. https://doi.org/10.1021/acs.jpcc.7b09079

    Article  CAS  Google Scholar 

  15. Wang R, Wang C, Liu K, Bei F, Han Q, Wu X (2014) Nucleation of polyaniline nano-/macrotubes from anilinium composed micelles. J Phys Chem B 118:2544–2552. https://doi.org/10.1021/jp411235u

    Article  CAS  PubMed  Google Scholar 

  16. Zhao F, Jiao H, Zhao S (2015) Wire-like nano-polyaniline deposited electrochemically in a reverse micelle electrolyte as a pH sensor. Int J Miner Metall Mater 22:1115–1119. https://doi.org/10.1007/s12613-015-1175-y

    Article  CAS  Google Scholar 

  17. Zhang S, Chen S (2015) Surfactant-template preparation of polyaniline semi-tubes for oxygen reduction. Catalysts 5:1202–1210. https://doi.org/10.3390/catal5031202

    Article  CAS  Google Scholar 

  18. Yamabe K, Goto H (2018) A new form of polyaniline: polyaniline whiskers prepared in a bio-surfactant reaction field. Macromol Res 26:704–708. https://doi.org/10.1007/s13233-018-6102-4

    Article  CAS  Google Scholar 

  19. Dutt S, Siril PF (2015) Controlling the morphology of polyaniline-platinum nanocomposites using swollen liquid crystal templates. Synth Met 209:82–90. https://doi.org/10.1016/j.synthmet.2015.07.012

    Article  CAS  Google Scholar 

  20. Shi L, Wu X, Lu L, Yang X, Wang X (2010) Intercalated polyaniline nanosheets prepared from lyotropic liquid crystalline solutions and their capacitive performance. Synth Met 160:989–995. https://doi.org/10.1016/j.synthmet.2010.02.014

    Article  CAS  Google Scholar 

  21. Shi L, Wu X, Lu L, Yang X, Wang X (2009) Molecular mechanism for formation of polyaniline lamella from a lyotropic liquid crystal: an NMR study. J Phys Chem B 113:2725–2733. https://doi.org/10.1021/jp9002824

    Article  CAS  PubMed  Google Scholar 

  22. Song G, Han J, Bo J, Guo R (2009) Synthesis of polyaniline nanostructures in different lamellar liquid crystals and application to lubrication. J Mater Sci 44:715–720. https://doi.org/10.1007/s10853-008-3175-z

    Article  CAS  Google Scholar 

  23. Liu K, Li H, Lu Y, Wang R, Bei F, Lu L, Han Q, Wu X (2016) A completely controlled sphere-to-bilayer micellar transition: the molecular mechanism and application on the growth of nanosheets. Soft Matter 12:3703–3709. https://doi.org/10.1039/C6SM00003G

    Article  CAS  PubMed  Google Scholar 

  24. Wang R, Wu X, Bei F (2018) Synthesis of polyaniline nanowires and nanorods in the presence of NaF under an electric field and their characterization. Macromol Mater Eng 303:1700452. https://doi.org/10.1002/mame.201700452

    Article  CAS  Google Scholar 

  25. Raghu AV, Gadaginamath GS, Priya M, Seema P, Jeong HM, Aminabhavi TM (2008) Synthesis and characterization of novel polyurethanes based on N1, N4-bis[(4-hydroxyphenyl)methylene]succinohydrazide hard segment. J Appl Polym Sci 110:2315. https://doi.org/10.1002/app.27366

    Article  CAS  Google Scholar 

  26. Devaraj S, Vardhan PV (2017) Capacitive storage performance of nanorod assembly of polyaniline. J Solid State Electrochem 21:1121–1127. https://doi.org/10.1007/s10008-016-3464-4

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We thank Cuiying **a, Lili Huang and Meigui Huang for their helpful discussions. The authors would like to acknowledge the financial supports from the Natural Science Foundation of China (grant No. 51963021), the Science Foundation of Yulin Normal University (No. G2019ZK22 and G2019ZK20), and Yulin Normal University Research Grant (grant No. 2019YJKY18, 2019YJKY19 and 2019YJKY17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruijuan Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**g, Y., wang, R., Shi, C. et al. The synthesis and characterization of helical polyaniline in the liquid crystal. J Polym Res 28, 88 (2021). https://doi.org/10.1007/s10965-021-02446-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02446-9

Keywords

Navigation