Log in

Application of chiral materials in electrochemical sensors

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Chirality is a universal phenomenon in nature and an essential attribute of life systems. Chiral recognition has very important research value in many fields. Amino acids and other chiral molecules are the basic components of human body. Understanding the configuration of chiral molecules is beneficial not only to the development of life science, but also to the development of chiral recognition. Compared with other traditional chiral recognition methods, electrochemical methods have the advantages of rapid detection, simple operation, low price, and high sensitivity, which has been widely concerned. In this review, we present an overview of chiral materials in a view of various chiral selectors, including amino acids and their derivatives, proteins, polysaccharides, chiral ligand exchange compounds, chiral cavity compounds (such as cyclodextrin, cucurbituril, calixarene, crown ether), and chiral ionic liquids, which were applied for the recognition of chiral molecules. Besides the chiral recognition mechanisms, some critical challenges and outlooks in the field of electrochemical chiral sensing interfaces are also discussed.

We have reported an overview of chiral materials in various chiral selectors, including amino acids and their derivatives, proteins, polysaccharides, chiral ligand-exchange compounds, chiral cavity, and chiral ionic liquids, which was applied for the recognition of chiral molecules. Besides chiral recognition mechanism, some critical challenges and outlooks are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Burg F, Breitenlechner S, Jandl C, Bach T (2020) Enantioselective oxygenation of exocyclic methylene groups by a manganese porphyrin catalyst with a chiral recognition site. Chem Sci 11:2121–2129

    CAS  Google Scholar 

  2. Hou Y, Liu Z, Tong L, Zhao L, Kuang X, Kuang R, Ju H (2020) One-step electrodeposition of the MOF@ CCQDs/NiF electrode for chiral recognition of tyrosine isomers. Dalton T 49:31–34

    CAS  Google Scholar 

  3. Tian J, Pan M, Ma Y, Chew JW (2020) Effect of membrane fouling on chiral separation. J Membrane Sci 593:117352

    CAS  Google Scholar 

  4. Cui YY, Yang CX, Yan XP (2020) Thiol-yne click post-modification for the synthesis of chiral microporous organic networks for chiral gas chromatography. ACS Appl Mater Inter 12:4954–4961

    CAS  Google Scholar 

  5. Petitjean M (2020) Comment on “bad language”: resolving some ambiguities about chirality. Angew Chem 132:7722–7723

    Google Scholar 

  6. Amako Y, Woo CM (2019) A chiral trick to map protein ligandability. Nat Chem 11:1080–1082

    CAS  PubMed  Google Scholar 

  7. Liu Z, Xu Y, Ji CY, Chen S, Li X, Zhang X, Li J (2020) Fano-enhanced circular dichroism in deformable stereo metasurfaces. Adv Mater 32:1907077

    CAS  Google Scholar 

  8. Yang W, Cadwallader KR, Liu Y, Huang M, Sun B (2019) Characterization of typical potent odorants in raw and cooked Toona sinensis (A. Juss.) M. Roem. by instrumental-sensory analysis techniques. Food Chem 282:153–163

    CAS  PubMed  Google Scholar 

  9. Yu X, He L, Pentok M, Yang H, Yang Y, Li Z, Chen X (2019) An aptamer-based new method for competitive fluorescence detection of exosomes. Nanoscale 11:15589–15595

    CAS  PubMed  Google Scholar 

  10. He Y, He M, Nan K, Cao R, Chen B, Hu B (2019) Magnetic solid-phase extraction using sulfur-containing functional magnetic polymer for high-performance liquid chromatography-inductively coupled plasma-mass spectrometric speciation of mercury in environmental samples. J Chromatogr A 1595:19–27

    CAS  PubMed  Google Scholar 

  11. Yang J, Li Z, Tan W, Wu D, Tao Y, Kong Y (2018) Construction of an electrochemical chiral interface by the self-assembly of chiral calix [4] arene and cetyltrimethylammonium bromide for recognition of tryptophan isomers. Electrochem Commun 96:22–26

    CAS  Google Scholar 

  12. Wang X, Wang Y, Wu Y, **ao Y (2019) A highly sensitive and versatile chiral sensor based on a top-gate organic field effect transistor functionalized with thiolated β-cyclodextrin. Analyst 144:2611–2617

    CAS  PubMed  Google Scholar 

  13. Gómez-Urbano JL, Gómez-Cámer JL, Botas C, Rojo T, Carriazo D (2019) Graphene oxide-carbon nanotubes aerogels with high sulfur loadings suitable as binder-free cathodes for high performance lithiumsulfur batteries. J Power Sources 412:408–415

    Google Scholar 

  14. Niu X, Mo Z, Yang X, Shuai C, Liu N, Guo R (2019) Graphene-ferrocene functionalized cyclodextrin composite with high electrochemical recognition capability for phenylalanine enantiomers. Bioelectrochemistry 128:74–82

    CAS  PubMed  Google Scholar 

  15. Niu X, Yang X, Mo Z, Guo R, Liu N, Zhao P, Ouyang M (2019) Voltammetric enantiomeric differentiation of tryptophan by using multiwalled carbon nanotubes functionalized with ferrocene and β-cyclodextrin. Electrochim Acta 297:650–659

    CAS  Google Scholar 

  16. Yang F, Kong N, Conlan XA, Wang H, Barrow CJ, Yan F, Yang W (2017) Electrochemical evidences of chiral molecule recognition using L/D-cysteine modified gold electrodes. Electrochim Acta 237:22–28

    CAS  Google Scholar 

  17. Ye Q, Guo L, Wu D, Yang B, Tao Y, Deng L, Kong Y (2019) Covalent functionalization of bovine serum albumin with graphene quantum dots for stereospecific molecular recognition. Anal Chem 91:11864–11871

    CAS  PubMed  Google Scholar 

  18. Wang SY, Li L, **ao Y, Wang Y (2019) Recent advances in cyclodextrins-based chiral-recognizing platforms. TrAC-Trends Anal Chem 121:115691

    CAS  Google Scholar 

  19. Wattanakit C, Kuhn A (2020) Encoding chiral molecular information in metal structures. Chem Eur J 26:2993–3003

    CAS  PubMed  Google Scholar 

  20. Liang W, Rong Y, Fan L, Dong W, Dong Q, Yang C, Wong WY (2018) 3D graphene/hydroxypropyl-β-cyclodextrin nanocomposite as an electrochemical chiral sensor for the recognition of tryptophan enantiomers. J Mater Chem C 6:12822–12829

    CAS  Google Scholar 

  21. Atta NF, Galal A, Ahmed YM (2019) Highly conductive crown ether/ionic liquid crystal-carbon nanotubes composite based electrochemical sensor for chiral recognition of tyrosine enantiomers. J Electrochem Soc 166:B623–B630

    Google Scholar 

  22. Arnaboldi S, Grecchi S, Magni M, Mussini P (2018) Electroactive chiral oligo-and polymer layers for electrochemical enantiorecognition. Curr Opin in Electroche 7:188–199

    CAS  Google Scholar 

  23. Ouldali H, Sarthak K, Ensslen T, Piguet F, Manivet P, Pelta J, Oukhaled A (2020) Electrical recognition of the twenty proteinogenic amino acids using an aerolysin nanopore. Nat Biotechnol 38:176–181

    CAS  PubMed  Google Scholar 

  24. Huang L, Lin Q, Li Y, Zheng G, Chen Y (2019) Study of the enantioselectivity and recognition mechanism of sulfhydryl-compound-functionalized gold nanochannel membranes. Anal Bioanal Chem 411:471–478

    CAS  PubMed  Google Scholar 

  25. Gou H, He J, Mo Z, Wei X, Hu R, Wang Y, Guo R (2016) A highly effective electrochemical chiral sensor of tryptophan enantiomers based on covalently functionalize reduced graphene oxide with L-lysine. J Electrochem Soc 163:B272–B279

    CAS  Google Scholar 

  26. Zor E, Bingol H, Ersoz M (2019) Chiral sensors. TrAC-Trends Anal Chem 121:115662

    CAS  Google Scholar 

  27. Shi X, Wang Y, Peng C, Zhang Z, Chen J, Zhou X, Jiang H (2017) Enantiorecognition of tyrosine based on a novel magnetic electrochemical chiral sensor. Electrochim Acta 241:386–394

    CAS  Google Scholar 

  28. Guo J, Wei X, Lian H, Li L, Sun X, Liu B (2020) Urchin-like chiral metal-organic framework/reduced graphene oxide nanocomposite for enantioselective discrimination of D/L-tryptophan. ACS Appl Nano Mater 3:3675–3683

    CAS  Google Scholar 

  29. Kingsford OJ, Zhang D, Ma Y, Wu Y, Zhu G (2019) Electrochemically recognizing tryptophan enantiomers based on carbon black/poly-l-cysteine modified electrode. J Electrochem Soc 166:B1226–B1231

    CAS  Google Scholar 

  30. Stoian IA, Iacob BC, Ramalho JPP, Marian IO, Chiș V, Bodoki E, Oprean R (2019) A chiral electrochemical system based on L-cysteine modified gold nanoparticles for propranolol enantiodiscrimination: Electroanalysis and computational modelling. Electrochim Acta 326:134961

    CAS  Google Scholar 

  31. Pawar NJ, Wang L, Higo T, Bhattacharya C, Kancharla PK, Zhang F, Huang X (2019) Expedient synthesis of core disaccharide building blocks from natural polysaccharides for heparan sulfate oligosaccharide assembly. Angew Chem 58:18577–18583

    CAS  Google Scholar 

  32. Yang J, Wu D, Fan GC, Ma L, Tao Y, Qin Y, Kong Y (2019) A chiral helical self-assembly for electrochemical recognition of tryptophan enantiomers. Electrochem Commun 104:106478

    CAS  Google Scholar 

  33. Jafari M, Tashkhourian J, Absalan G (2018) Chiral recognition of tryptophan enantiomers using chitosan-capped silver nanoparticles: scanometry and spectrophotometry approaches. Talanta 178:870–878

    CAS  PubMed  Google Scholar 

  34. Gu X, Tao Y, Pan Y, Deng L, Bao L, Kong Y (2015) DNA-inspired electrochemical recognition of tryptophan isomers by electrodeposited chitosan and sulfonated chitosan. Anal Chem 87:9481–9486

    CAS  PubMed  Google Scholar 

  35. Tao Y, Gu X, Yang B, Deng L, Bao L, Kong Y, Qin Y (2017) Electrochemical enantioselective recognition in a highly ordered self-assembly framework. Anal Chem 89:1900–1906

    CAS  PubMed  Google Scholar 

  36. Bao L, Chen X, Yang B, Tao Y, Kong Y (2016) Construction of electrochemical chiral interfaces with integrated polysaccharides via amidation. ACS Appl Mater Inter 8:21710–21720

    CAS  Google Scholar 

  37. Niu X, Yang X, Mo Z, Liu N, Guo R, Pan Z, Liu Z (2019) Electrochemical chiral sensing of tryptophan enantiomers by using 3D nitrogen-doped reduced graphene oxide and self-assembled polysaccharides. Microchim Acta 186:557

    Google Scholar 

  38. Bi Q, Dong S, Sun Y, Lu X, Zhao L (2016) An electrochemical sensor based on cellulose nanocrystal for the enantioselective discrimination of chiral amino acids. Anal Biochem 508:50–57

    CAS  PubMed  Google Scholar 

  39. Zou J, Chen XQ, Zhao GQ, Jiang XY, Jiao FP, Yu JG (2019) A novel electrochemical chiral interface based on the synergistic effect of polysaccharides for the recognition of tyrosine enantiomers. Talanta 195:628–637

    CAS  PubMed  Google Scholar 

  40. Bao L, Tao Y, Gu X, Yang B, Deng L, Kong Y (2016) Potato starch as a highly enantioselective system for temperature-dependent electrochemical recognition of tryptophan isomers. Electrochem Commun 64:21–25

    CAS  Google Scholar 

  41. Ye Q, Hu J, Wu D, Yang B, Tao Y, Qin Y, Kong Y (2019) Smart construction of an efficient enantioselective sensing device based on bioactive tripeptide. Anal Methods 11:1951–1957

    CAS  Google Scholar 

  42. Ye Q, Yin ZZ, Wu H, Wu D, Tao Y, Kong Y (2020) Decoration of glutathione with copper-platinum nanoparticles for chirality sensing of tyrosine enantiomers. Electrochem Commun 110:106638

    CAS  Google Scholar 

  43. Sun YX, He JH, Huang JW, Sheng Y, Xu D, Bradley M, Zhang R (2020) Electrochemical recognition of tryptophan enantiomers based on the self-assembly of polyethyleneimine and chiral peptides. J Electroanal Chem 865:114130

    CAS  Google Scholar 

  44. Guo L, Huang Y, Zhang Q, Chen C, Guo D, Chen Y, Fu Y (2014) Electrochemical sensing for naproxen enantiomers using biofunctionalized reduced graphene oxide nanosheets. J Electrochem Soc 161(4):B70–B74

    CAS  Google Scholar 

  45. Fu Y, Chen Q, Zhou J, Han Q, Wang Y (2012) Enantioselective recognition of mandelic acid based on γ-globulin modified glassy carbon electrode. Anal Biochem 421:103–107

    CAS  PubMed  Google Scholar 

  46. Zor E, Patir IH, Bingol H, Ersoz M (2013) An electrochemical biosensor based on human serum albumin/graphene oxide/3-aminopropyltriethoxysilane modified ITO electrode for the enantioselective discrimination of D-and L-tryptophan. Biosens Bioelectron 42:321–325

    CAS  PubMed  Google Scholar 

  47. Wang Y, Han Q, Zhang Q, Huang Y, Guo L, Fu Y (2013) Enantioselective recognition of penicillamine enantiomers on bovine serum albumin-modified glassy carbon electrode. J Solid State Electr 17:627–633

    CAS  Google Scholar 

  48. Xu S, Wang Y, Tang Y, Ji Y (2018) A protein-based mixed selector chiral monolithic stationary phase in capillary electrochromatography. New J Chem 42:13520–13528

    CAS  Google Scholar 

  49. Konya Y, Taniguchi M, Furuno M, Nakano Y, Tanaka N, Fukusaki E (2018) Mechanistic study on the high-selectivity enantioseparation of amino acids using a chiral crown ether-bonded stationary phase and acidic, highly organic mobile phase by liquid chromatography/time-of-flight mass spectrometry. J Chromatogr A 1578:35–44

    CAS  PubMed  Google Scholar 

  50. Upmanis T, Kažoka H, Arsenyan P (1622) A study of tetrapeptide enantiomeric separation on crown ether based chiral stationary phases. J Chromatogr A 2020:461152

  51. Aav R, Mishra KA (2018) The breaking of symmetry leads to chirality in cucurbituril-type hosts. Symmetry 10:98

    Google Scholar 

  52. Ganapati S, Isaacs L (2018) Acyclic cucurbit [n] uril-type receptors: preparation, molecular recognition properties and biological applications. Isr J Chem 58:250–263

    CAS  PubMed  Google Scholar 

  53. Rekharsky MV, Yamamura H, Inoue C, Kawai M, Osaka I, Arakawa R, Kim K (2006) Chiral recognition in cucurbituril cavities. J Am Chem Soc 128:14871–14880

    CAS  PubMed  Google Scholar 

  54. Huang WH, Zavalij PY, Isaacs L (2007) Chiral recognition inside a chiral cucurbituril. Angew Chem Int Edit 46:7425–7427

    CAS  Google Scholar 

  55. Kikuchi Y, Kobayashi K, Aoyama Y (1992) Complexation of chiral glycols, steroidal polyols, and surfars with amultibenzenoid, achiral host as studied by induced circular dichroism spectroscopy: excition chirality induction in resorcinol-aldehyde cyclotetramer and its use as a supramolecular probe for the assignments of stereochemistry of chiral guests. J Am Chem Soc 114:1351–1358

    CAS  Google Scholar 

  56. Borovkov VV, Hembury GA, Inoue Y (2004) Origin, control, and application of supramolecular chirogenesis in bisporphyrin-based systems. Accounts Chem Res 37:449–459

    CAS  Google Scholar 

  57. Mao X, Zhao H, Luo L, Tian D, Li H (2015) Highly sensitive chiral recognition of amino propanol in serum with R-mandelic acid-linked calix [4] arene modified graphene. J Mater Chem C 3:1325–1329

    CAS  Google Scholar 

  58. Wu SS, Wei M, Wei W, Liu Y, Liu S (2019) Electrochemical aptasensor for aflatoxin B1 based on smart host-guest recognition of β-cyclodextrin polymer. Biosens Bioelectron 129:58–63

    CAS  PubMed  Google Scholar 

  59. Ivanov AA, Falaise C, Laouer K, Hache F, Changenet P, Mironov YV, Haouas M (2019) Size-exclusion mechanism driving host-guest interactions between octahedral rhenium clusters and cyclodextrins. Inorg Chem 58:13184–13194

    CAS  PubMed  Google Scholar 

  60. Upadhyay SS, Kalambate PK, Srivastava AK (2017) Enantioselective analysis of moxifloxacin hydrochloride enantiomers with graphene-β-cyclodextrin-nanocomposite modified carbon paste electrode using adsorptive strip** differential pulse voltammetry. Electrochim Acta 248:258–269

    CAS  Google Scholar 

  61. Dong S, Bi Q, Qiao C, Sun Y, Zhang X, Lu X, Zhao L (2017) Electrochemical sensor for discrimination tyrosine enantiomers using graphene quantum dots and β-cyclodextrins composites. Talanta 173:94–100

    CAS  PubMed  Google Scholar 

  62. Yi Y, Zhang D, Ma Y, Wu X, Zhu G (2019) Dual-signal electrochemical enantiospecific recognition system via competitive supramolecular host-guest interactions: the case of phenylalanine. Anal Chem 91:2908–2915

    CAS  PubMed  Google Scholar 

  63. Wu D, Kong Y (2019) Dynamic interaction between host and guest for enantioselective recognition: application of β-cyclodextrin-based charged catenane as electrochemical probe. Anal Chem 91:5961–5967

    CAS  PubMed  Google Scholar 

  64. Upadhyay SS, Gadhari NS, Srivastava AK (2020) Biomimetic sensor for ethambutol employing β-cyclodextrin mediated chiral copper metal organic framework and carbon nanofibers modified glassy carbon electrode. Biosens Bioelectron 165:112397

    CAS  PubMed  Google Scholar 

  65. Helfferich FG (1961) ‘Ligand exchange’: a novel separation technique. Nature 189:1001–1002

    CAS  Google Scholar 

  66. Davankov VA, Rogozhin SV, Semechkin AV, Sachkova TP (1973) Ligand-exchange chromatography of racemates: influence of the degree of saturation of the asymmetric resin by metal ions on ligand exchange. J Chromatogr A 82:359–365

    CAS  Google Scholar 

  67. Chen Q, Zhou J, Han Q, Wang Y, Fu Y (2012) Electrochemical enantioselective recognition of tryptophane enantiomers based on chiral ligand exchange. Colloid Surface B 92:130–135

    CAS  Google Scholar 

  68. Bao L, Dai J, Yang L, Ma J, Tao Y, Deng L, Kong Y (2015) Electrochemical recognition of tyrosine enantiomers based on chiral ligand exchange with sodium alginate as the chiral selector. J Electrochem Soc 162:H486–H491

    CAS  Google Scholar 

  69. Zhao Y, Cui L, Ke W, Zheng F, Li X (2019) Electroactive Au@Ag nanoparticle assembly driven signal amplification for ultrasensitive chiral recognition of D−/L-Trp. ACS Sustain Chem Eng 7:5157–5166

    CAS  Google Scholar 

  70. Chen X, Zhang S, Shan X, Chen Z (2019) Derivative chiral copper (II) complexes as template of an electrochemical molecular imprinting sol-gel sensor for enantiorecognition of aspartic acid. Anal Chim Acta 1072:54–60

    CAS  PubMed  Google Scholar 

  71. Longhi M, Arnaboldi S, Husanu E, Grecchi S, Buzzi IF, Cirilli R, Guazzelli L (2019) A family of chiral ionic liquids from the natural pool: relationships between structure and functional properties and electrochemical enantiodiscrimination tests. Electrochim Acta 298:194–209

    CAS  Google Scholar 

  72. Yamakawa S, Wada K, Hidaka M, Hanasaki T, Akagi K (2019) Chiral liquid-crystalline ionic liquid systems useful for electrochemical polymerization that affords helical conjugated polymers. Adv Funct Mater 29:1806592

    Google Scholar 

  73. Wu D, Tan W, Yu Y, Yang B, Li H, Kong Y (2018) A facile avenue to prepare chiral graphene sheets as electrode modification for electrochemical enantiorecognition. Anal Chim Acta 1033:58–64

    CAS  PubMed  Google Scholar 

  74. Wu D, Yang J, Peng Y, Yu Y, Zhang J, Guo L, Jiang J (2019) Highly enantioselective recognition of various acids using polymerized chiral ionic liquid as electrode modifies. Sensor Actuat B 282:164–170

    CAS  Google Scholar 

  75. Wu D, Tan W, Li H, Lei Z, Deng L, Kong Y (2019) A facile route to prepare functional mesoporous organosilica spheres with electroactive units for chiral recognition of amino acids. Analyst 144:543–549

    CAS  PubMed  Google Scholar 

  76. Saleh TA, Al-Shalalfeh MM, Al-Saadi AA (2016) Graphene dendrimer-stabilized silver nanoparticles for detection of methimazole using surface-enhanced Raman scattering with computational assignment. Sci Rep 6:32185

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Conrad EH (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312:1191–1196

    CAS  PubMed  Google Scholar 

  78. Saiz-Bretín M, Domínguez-Adame F, Malyshev AV (2019) Twisted graphene nanoribbons as nonlinear nanoelectronic devices. Carbon 149:587–593

    Google Scholar 

  79. Ge L, Hong Q, Li H, Liu C, Li F (2019) Direct-laser-writing of metal sulfide-graphene nanocomposite photoelectrode toward sensitive photoelectrochemical sensing. Adv Funct Mater 29:1904000

    Google Scholar 

  80. Pan F, Sun C, Li Y, Tang D, Zou Y, Li X, Li Y (2019) Solution-processable n-doped graphene-containing cathode interfacial materials for high-performance organic solar cells. Energy Environ Sci 12:3400–3411

    CAS  Google Scholar 

  81. Yang Z, Tian J, Yin Z, Cui C, Qian W, Wei F (2019) Carbon nanotube-and graphene-based nanomaterials and applications in high-voltage supercapacitor: a review. Carbon 141:467–480

    CAS  Google Scholar 

  82. Yang X, Niu X, Mo Z, Guo R, Liu N, Zhao P, Liu Z (2019) Electrochemical chiral interface based on the Michael addition/Schiff base reaction of polydopamine functionalized reduced graphene oxide. Electrochim Acta 319:705–715

    CAS  Google Scholar 

  83. Wang R, Mo Z, Niu X, Yan M, Feng H, Zhang H, Liu N (2019) A regular self-assembly micro-nano structure based on sodium carboxymethyl cellulose-reduced graphene oxide (rGO-EDA-CMC) for electrochemical chiral sensor. J Electrochem Soc 166:B173–B182

    CAS  Google Scholar 

  84. Niu X, Yang X, Mo Z, Wang J, Pan Z, Liu Z, Guo R (2020) Fabrication of an electrochemical chiral sensor via an integrated polysaccharides/3D nitrogen-doped graphene-CNT frame. Bioelectrochemistry 131:107396

    CAS  PubMed  Google Scholar 

  85. Iijima S (1991) Synthesis of carbon nanotubes. Nature 354:56–58

    CAS  Google Scholar 

  86. Liu Z, Dai S, Wang Y, Yang B, Hao D, Liu D, Zhao J (2020) Photoresponsive transistors based on lead-free perovskite and carbon nanotubes. Adv Funct Mater 30:1906335

    CAS  Google Scholar 

  87. Zhang Y, Liu G, Yao X, Gao S, **e J, Xu H, Lin N (2018) Electrochemical chiral sensor based on cellulose nanocrystals and multiwall carbon nanotubes for discrimination of tryptophan enantiomers. Cellulose 25:3861–3871

    CAS  Google Scholar 

  88. Chen L, Chang F, Meng L, Li M, Zhu Z (2014) A novel electrochemical chiral sensor for 3, 4-dihydroxyphenylalanine based on the combination of single-walled carbon nanotubes, sulfuric acid and square wave voltammetry. Analyst 139:2243–2248

    CAS  PubMed  Google Scholar 

  89. Jariwala D, Sangwan VK, Lauhon LJ, Marks TJ, Hersam MC (2013) Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem Soc Rev 42:2824–2860

    CAS  PubMed  Google Scholar 

  90. Zhang Q, Fu M, Lu H, Fan X, Wang H, Zhang Y, Wang H (2019) Novel potential and current type chiral amino acids biosensor based on L/D-handed double helix carbon nanotubes@ polypyrrole@ Au nanoparticles@ L/D-cysteine. Sensor Actuat B 296:126667

    CAS  Google Scholar 

  91. Zhu H, Chang F, Zhu Z (2017) The fabrication of carbon nanotubes array-based electrochemical chiral sensor by electrosynthesis. Talanta 166:70–74

    CAS  PubMed  Google Scholar 

  92. He W, Dai J, Li T, Bao Y, Yang F, Zhang X, Uyama H (2018) Novel strategy for the investigation on chirality selection of single-walled carbon nanotubes with DNA by electrochemical characterization. Anal Chem 90:12810–12814

    CAS  PubMed  Google Scholar 

  93. Pu C, Xu Y, Liu Q, Zhu A, Shi G (2019) Enantiomers of single chirality nanotube as chiral recognition interface for enhanced electrochemical chiral analysis. Anal Chem 91:3015–3020

    CAS  PubMed  Google Scholar 

  94. Guo L, Bao L, Yang B, Tao Y, Mao H, Kong Y (2017) Electrochemical recognition of tryptophan enantiomers using self-assembled diphenylalanine structures induced by graphene quantum dots, chitosan and CTAB. Electrochem Commun 83:61–66

    CAS  Google Scholar 

  95. Berthod A (2006) Chiral recognition mechanisms 78: 2093-2099

  96. Easson LH, Stedman E (1933) Studies on the relationship between chemical constitution and physiological action: molecular dissymmetry and physiological activity. Biochem J 27:1257–1266

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Ogston AG (1948) Interpretation of experiments on metabolic processes, using isotopic tracer elements. Nature 162:963–963

    CAS  PubMed  Google Scholar 

  98. Dalgliesh CE (1952) The optical resolution of aromatic amino-acids on paper chromatograms. J Chem Soc 1952:3940–3942

    Google Scholar 

  99. Zhou Y, Nagaoka T, Yu B, Levon K (2009) Chiral ligand exchange potentiometric aspartic acid sensors with polysiloxane films containing a chiral ligand N-carbobenzoxy-aspartic acid. Anal Chem 81:1888–1892

    CAS  PubMed  Google Scholar 

  100. Davankov VA (2000) 30 years of chiral ligand exchange. Enantiomer 5:209–223

    CAS  PubMed  Google Scholar 

  101. Yang J, Tan X, Zhao Y (2018) Chiral recognition of the carnitine enantiomers using Rhodamine B as a resonance Rayleigh scattering probe. Chirality 30:1173–1181

    CAS  PubMed  Google Scholar 

  102. Takahashi M, Takani D, Haba M, Hosokawa M (2020) Investigation of the chiral recognition ability of human carboxylesterase 1 using indomethacin esters. Chirality 32:73–80

    CAS  PubMed  Google Scholar 

  103. Majerska K, Duda A (2004) Stereocontrolled polymerization of racemic lactide with chiral initiator: combining stereoelection and chiral ligand-exchange mechanism. J Am Chem Soc 126:1026–1027

    CAS  PubMed  Google Scholar 

  104. Feng W, Liu C, Lu S, Zhang C, Zhu X, Liang Y, Nan J (2014) Electrochemical chiral recognition of tryptophan using a glassy carbon electrode modified with β-cyclodextrin and graphene. Microchim Acta 181:501–509

    CAS  Google Scholar 

  105. Wulff G, Vesper W (1978) Preparation of chromatographic sorbents with chiral cavities for racemic resolution. J Chromatogr A 167:171–186

    CAS  Google Scholar 

  106. Cantarella M, Carroccio SC, Dattilo S, Avolio R, Castaldo R, Puglisi C, Privitera V (2019) Molecularly imprinted polymer for selective adsorption of diclofenac from contaminated water. Chem Eng J 367:180–188

    CAS  Google Scholar 

  107. **e X, Ma X, Guo L, Fan Y, Zeng G, Zhang M, Li J (2019) Novel magnetic multi-templates molecularly imprinted polymer for selective and rapid removal and detection of alkylphenols in water. Chem Eng J 357:56–65

    CAS  Google Scholar 

  108. Zhao Q, Yang J, Zhang J, Wu D, Tao Y, Kong Y (2019) Single-template molecularly imprinted chiral sensor for simultaneous recognition of alanine and tyrosine enantiomers. Anal Chem 91:12546–12552

    CAS  PubMed  Google Scholar 

  109. Duan D, Yang H, Ding Y, Li L, Ma G (2019) A three-dimensional conductive molecularly imprinted electrochemical sensor based on MOF derived porous carbon/carbon nanotubes composites and prussian blue nanocubes mediated amplification for chiral analysis of cysteine enantiomers. Electrochim Acta 302:137–144

    CAS  Google Scholar 

  110. Wattanakit C, Saint Côme YB, Lapeyre V, Bopp PA, Heim M, Yadnum S, Kuhn A (2014) Enantioselective recognition at mesoporous chiral metal surfaces. Nat Commun 5:1–8

    Google Scholar 

Download references

Funding

This work was supported by the National Nature Science Foundations of China (Grants No. 21867015, 22065021), the Province Nature Science Foundations of Gansu (Grants No. 20JR5RA453), and Hongliu Outstanding Youth Teacher Cultivate Project of Lanzhou University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunjie Wang.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, X., Yang, X., Li, H. et al. Application of chiral materials in electrochemical sensors. Microchim Acta 187, 676 (2020). https://doi.org/10.1007/s00604-020-04646-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04646-4

Keywords

Navigation