Log in

A prismatic approach to crystalline local systems

  • Published:
Inventiones mathematicae Aims and scope

Abstract

Let \(X\) be a smooth \(p\)-adic formal scheme. We show that integral crystalline local systems on the generic fiber of \(X\) are equivalent to prismatic \(F\)-crystals over the analytic locus of the prismatic site of \(X\). As an application, we give a prismatic proof of Fontaine’s \(\mathrm {C}_{{\mathrm {crys}}}\)-conjecture, for general coefficients, in the relative setting, and allowing ramified base fields. Along the way, we also establish various foundational results for the cohomology of prismatic \(F\)-crystals, including various comparison theorems, Poincaré duality, and Frobenius isogeny.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. In [28, Def. 1.1] such objects are called completed prismatic \(F\)-crystals. To see that their notion is compatible with ours, note that by [28, Prop. 4.13] and Beauville–Laszlo gluing, the restriction of a completed prismatic \(F\)-crystal to the open subset \(\operatorname{Spec}(\mathfrak {S})\setminus V(p,E)\) of a Breuil–Kisin prism \((\mathfrak {S},E)\) is a vector bundle. Moreover, the global sections of a vector bundle over \(\operatorname{Spec}(A)\setminus V(p,I)\) are a finitely presented module over \(A\) (cf. Lemma 5.8).

  2. For any multiindex \(\alpha \in \mathbf {Z}^{d}_{\ge 0}\), we use the customary notation , , and .

  3. Here we use that the ramification index of \(V_{0}\) is \(1 \le p-1\); when it is \(\ge p\), the analogous limit \(\lim _{n \to \infty} \lvert \pi ^{n}/n!\rvert = \infty \) for a uniformizer \(\pi \in V_{0}\).

  4. To see this, we recall from Definition 2.23 and Remark 2.24 that there are natural injections \(\operatorname{gr}^{\bullet }\mathbb{B}_{{\mathrm {crys}}}(S,S^{+})\to \operatorname{gr}^{\bullet }\mathbb{B}_{{\mathrm {crys}}, K}(S,S^{+}) \to \operatorname{gr}^{\bullet }\mathbb{B}_{{\mathrm {dR}}}(S,S^{+})\). Thus, the claimed isomorphism follows from the fact that the composed map is a graded isomorphism, thanks to [63, Cor. 2.25].

  5. We warn the reader that our construction of \(\mathcal {O}\mathbb{A}_{{\mathrm {crys}}}\) is ad hoc and different from that of [63], where \(\mathcal {O}_{K}\) is assumed to be unramified.

  6. More conceptually, (10) forms a diagram of objects in an appropriately defined infinitesimal site and there is a natural infinitesimal crystal associated to ℰ that can evaluate on the diagram.

  7. The uniqueness follows from the fact that the set of elements \(\{e\otimes f \mid e\in E(R[1/p]),~f\in \mathbb{B}^{+}_{{\mathrm {dR}}}(S,S^{+}) \}\) is dense in \(\mathcal {O}\mathbb{B}_{{\mathrm {dR}}}^{+}(S,S^{+})\), thanks to the explicit formula in [57, Prop. 6.10].

  8. Let \(d\) be a generator of . Then \(\delta (d)+p^{p-1} \cdot (d/p)^{p}\) is invertible in , so the element \(\varphi (d)=d^{p}+p\delta (d) = p(\delta (d)+p^{p-1} \cdot (d/p)^{p})\) is automatically invertible in .

  9. The fact that the vanishing locus of \(V(\mu )\) in \(\mathcal {Y}_{[0,\infty )}\) is the union \(\bigcup _{n>0} V(\varphi ^{-n}(I))\) follows from the intersection formula \(\bigcap _{r} \frac{\mu}{\varphi ^{-r}(\mu )}\mathrm {A}_{\inf}= \mu \mathrm {A}_{ \inf}\) in [22, Lem. 3.23]: for fixed \(s\in \mathbf {N}\) and \(m \gg 0\), the ideal \(\varphi ^{-m}(I)\) is invertible in \(\mathcal {O}_{\mathcal {Y}_{[0,s]}}\), so the sequence of ideals \(\frac{\mu}{\varphi ^{-r}(\mu )}\cdot \mathcal {O}_{\mathcal {Y}_{[0,s]}}= \varphi ^{-1}(I) \cdots \varphi ^{-r}(I) \cdot \mathcal {O}_{\mathcal {Y}_{[0,s]}}\) eventually stabilizes for large enough \(r\).

  10. To see the injectivity, we note that for the Breuil–Kisin prism \((\mathfrak{S},I=(E(u))\) one has the injections \(\mathfrak{S} \to \mathfrak{S}\langle \varphi ^{n}(I)/p\rangle \to \mathfrak{S}\langle I/p \rangle \). So the case of \(S'\) follows by taking the \(p\)-complete flat base change along and a further localization.

  11. This is a Breuil–Kisin prism in the sense of [28, Ex. 3.4].

  12. More precisely, given a divided power thickening \((A,J)\) of \(R\), we can lift the composition \(P \twoheadrightarrow R \to A/J\) to a map \(\mathbf {Z}_{p}[ x_{s}]\to A\) by the freeness of \(P\). The base change of \((A,J)\) along the quasi-syntomic cover \(A\to (A\otimes _{\mathbf {Z}_{p} [ x_{s}]} \mathbf {Z}_{p} [x_{s}^{1/p^{\infty}}])^{ \wedge}_{p}\) forms a divided power thickening of \(R\otimes _{P} P^{0}\), and thus admits a map from \(\mathrm {A}_{{\mathrm {crys}}}(R\otimes _{P} P^{0})\).

  13. This is possible by the \(p\)-completeness of \(B\) and the observation that any lift of a unit of \(B/(J,p^{n})\) is a unit in \(B/p^{n}\), since \(J\) is a divided power ideal.

  14. To reduce to the setting of [61, Cor. 2.37], it suffices to notice that each cohomology sheaf \(H^{i}(\mathcal {E}'[1/p])\) is an isocrystal in vector bundles, which produces a finite filtration on \(Rf_{s,{\mathrm {crys}},*} \mathcal {E}'[1/p]\) such that each graded piece is a perfect complex.

  15. Using the perspective on symmetric monoidal \(\infty \)-categories as certain coCartesian fibrations \(\mathcal {C}^{\otimes} \to \mathrm {Fin}_{*}\) (see e.g. [46, Def. 2.0.0.7]), recall that a functor \(F^{\otimes} \colon \mathcal {C}^{\otimes} \to \mathcal {D}^{\otimes}\) over \(\mathrm {Fin}_{*}\) is lax symmetric monoidal if it preserves locally coCartesian lifts of inert maps ([46, Def. 2.1.1.8]) and symmetric monoidal if it preserves all locally coCartesian lifts. It is an equivalence if it is additionally an equivalence on the underlying \(\infty \)-categories ([46, § 2.1.3]). One can check easily that if \(F\) is lax symmetric monoidal and has a homotopy inverse \((F^{\otimes})^{-1}\) which is a symmetric monoidal equivalence, then \(F\) must also preserve all locally coCartesian lifts and hence be a symmetric monoidal equivalence.

  16. The statement in [28] contains the assumption that the \(\varphi \)-module is torsionfree, which is not used in the proof.

  17. The tensor product is automatically complete because is perfect (Proposition 5.11).

  18. Let \(S=\overline{A}/p\) be the quasiregular semiperfect ring. As in [15, Thm. 4.6.1, Ex. 4.6.9], the surjection from \(\mathrm {A}_{{\mathrm {crys}}}(\overline{A}/p) \to \overline{A}/p\) can be understood via the diagram of prismatic cohomology:

  19. By the triviality of the Kähler differential, we identify this de Rham complex with a Koszul complex.

References

  1. Andreatta, F., Iovita, A.: Semistable sheaves and comparison isomorphisms in the semistable case. Rend. Semin. Mat. Univ. Padova 128, 131–285 (2012)

    MathSciNet  Google Scholar 

  2. Andreatta, F., Iovita, A.: Comparison isomorphisms for smooth formal schemes. J. Inst. Math. Jussieu 12(1), 77–151 (2013)

    MathSciNet  Google Scholar 

  3. Anschütz, J., Le Bras, A.-C.: Prismatic Dieudonné theory. Forum Math. Pi 11, Paper No. e2, 92 (2023)

    Google Scholar 

  4. Antieau, B., Mathew, A., Morrow, M., Nikolaus, T.: On the Beilinson fiber square. Duke Math. J. 171(18), 3707–3806 (2022)

    MathSciNet  Google Scholar 

  5. Beilinson, A.: On the crystalline period map. Camb. J. Math. 1(1), 1–51 (2013)

    MathSciNet  Google Scholar 

  6. Berkovich, V.G.: Étale cohomology for non-Archimedean analytic spaces. Publ. Math. Inst. Hautes Études Sci. 78, 5–161 (1994)

    Google Scholar 

  7. Berthelot, P.: Cohomologie cristalline des schémas de caractéristique \(p>0\). Lecture Notes in Mathematics, vol. 407. Springer, Berlin (1974)

    Google Scholar 

  8. Berthelot, P.: Cohomologie rigide et cohomologie rigide à supports propres, Première partie (version provisoire 1991), Prépublication IRMAR (1996). https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf

  9. Berthelot, P., Ogus, A.: Notes on Crystalline Cohomology. Princeton University Press, Princeton; University of Tokyo Press, Tokyo (1978)

    Google Scholar 

  10. Bhatt, B.: \(p\)-adic derived de Rham cohomology. Preprint (2012). https://arxiv.org/abs/1204.6560

  11. Bhatt, B.: Algebraization and Tannaka duality. Camb. J. Math. 4(4), 403–461 (2016)

    MathSciNet  Google Scholar 

  12. Bhatt, B.: Specializing varieties and their cohomology from characteristic 0 to characteristic \(p\). In: Algebraic Geometry: Salt Lake City 2015. Proc. Sympos. Pure Math., vol. 97, pp. 43–88. Am. Math. Soc., Providence (2018)

    Google Scholar 

  13. Bhatt, B.: Cohen-Macaulayness of absolute integral closures. Preprint (2020). https://arxiv.org/abs/2008.08070

  14. Bhatt, B., de Jong, A.J.: Crystalline cohomology and de Rham cohomology. Preprint (2011). https://arxiv.org/abs/1110.5001

  15. Bhatt, B., Lurie, J.: Absolute prismatic cohomology. Preprint (2022). https://arxiv.org/abs/2201.06120

  16. Bhatt, B., Lurie, J.: The prismatization of \(p\)-adic formal schemes. Preprint (2022). https://arxiv.org/abs/2201.06124

  17. Bhatt, B., Mathew, A.: The arc-topology. Duke Math. J. 170(9), 1899–1988 (2021)

    MathSciNet  Google Scholar 

  18. Bhatt, B., Scholze, P.: The pro-étale topology for schemes. Astérisque 369, 99–201 (2015)

    Google Scholar 

  19. Bhatt, B., Scholze, P.: Projectivity of the Witt vector affine Grassmannian. Invent. Math. 209(2), 329–423 (2017)

    ADS  MathSciNet  Google Scholar 

  20. Bhatt, B., Scholze, P.: Prisms and prismatic cohomology. Ann. Math. (2) 196(3), 1135–1275 (2022)

    MathSciNet  Google Scholar 

  21. Bhatt, B., Scholze, P.: Prismatic \(F\)-crystals and crystalline Galois representations. Camb. J. Math. 11(2), 507–562 (2023)

    MathSciNet  Google Scholar 

  22. Bhatt, B., Morrow, M., Scholze, P.: Integral \(p\)-adic Hodge theory. Publ. Math. Inst. Hautes Études Sci. 128, 219–397 (2018)

    MathSciNet  Google Scholar 

  23. Bhatt, B., Morrow, M., Scholze, P.: Topological Hochschild homology and integral \(p\)-adic Hodge theory. Publ. Math. Inst. Hautes Études Sci. 129, 199–310 (2019)

    MathSciNet  Google Scholar 

  24. Bogdan, Z.: Mod-\(p\) Poincaré duality in \(p\)-adic analytic geometry. Preprint (2021). https://arxiv.org/abs/2111.01830

  25. Bosch, S., Güntzer, U., Remmert, R.: Non-Archimedean Analysis. Grundlehren der Mathematischen Wissenschaften, vol. 261. Springer, Berlin (1984)

    Google Scholar 

  26. Brinon, O.: Représentations \(p\)-adiques cristallines et de Rham dans le cas relatif. Mém. Soc. Math. Fr. (N. S.), no. 112, vi+159 (2008)

  27. Česnavičius, K., Scholze, P.: Purity for flat cohomology. Ann. Math. (2) 199(1), 51–180 (2024)

    MathSciNet  Google Scholar 

  28. Du, H., Liu, T., Suk Moon, Y., Shimizu, K.: Completed prismatic \(F\)-crystals and crystalline \(\mathbf{Z}_{p}\)-local systems. Preprint (2022). https://arxiv.org/abs/2203.03444

  29. Faltings, G.: Crystalline cohomology and \(p\)-adic Galois-representations. In: Algebraic Analysis, Geometry, and Number Theory (Baltimore, MD, 1988), pp. 25–80. Johns Hopkins University, Baltimore (1989)

    Google Scholar 

  30. Fontaine, J.-M.: Sur certains types de représentations \(p\)-adiques du groupe de Galois d’un corps local; construction d’un anneau de Barsotti-Tate. Ann. Math. (2) 115(3), 529–577 (1982)

    MathSciNet  Google Scholar 

  31. Fontaine, J.-M., Messing, W.: \(p\)-Adic periods and \(p\)-adic étale cohomology. In: Current Trends in Arithmetical Algebraic Geometry (Arcata, Calif., 1985). Contemp. Math., vol. 67, pp. 179–207. Am. Math. Soc., Providence (1987)

    Google Scholar 

  32. Guo, H.: Crystalline cohomology of rigid analytic spaces. Preprint (2021). https://arxiv.org/abs/2112.14304

  33. Guo, H., Petrov, A., Yang, Z.: Pointwise criteria of \(p\)-adic local systems (2023, in preparation)

  34. Harris, M.E.: Some results on coherent rings. Proc. Am. Math. Soc. 17, 474–479 (1966)

    MathSciNet  Google Scholar 

  35. Hollander, S.: A homotopy theory for stacks. Isr. J. Math. 163, 93–124 (2008)

    MathSciNet  Google Scholar 

  36. Huber, R.: A generalization of formal schemes and rigid analytic varieties. Math. Z. 217(4), 513–551 (1994)

    MathSciNet  Google Scholar 

  37. Huber, R.: Étale cohomology of rigid analytic varieties and adic spaces. Aspects of Mathematics, vol. E30. Friedr. Vieweg & Sohn, Braunschweig (1996)

    Google Scholar 

  38. Ivanov, A.B.: Arc-descent for the perfect loop functor and \(p\)-adic Deligne-Lusztig spaces. J. Reine Angew. Math. 794, 1–54 (2023)

    MathSciNet  Google Scholar 

  39. Kato, K., Messing, W.: Syntomic cohomology and \(p\)-adic étale cohomology. Tohoku Math. J. (2) 44(1), 1–9 (1992)

    MathSciNet  Google Scholar 

  40. Katz, N.M.: \(p\)-Adic properties of modular schemes and modular forms. In: Modular Functions of One Variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972). Lecture Notes in Math., vol. 350, pp. 69–190. Springer, Berlin (1973)

    Google Scholar 

  41. Kedlaya, K.S.: A \(p\)-adic local monodromy theorem. Ann. Math. (2) 160(1), 93–184 (2004)

    MathSciNet  Google Scholar 

  42. Kedlaya, K.S.: Some ring-theoretic properties of \(\mathrm{A}_{\mathrm{inf}}\), \(p\)-adic Hodge theory. In: Simons Symp., pp. 129–141. Springer, Cham (2020)

    Google Scholar 

  43. Kedlaya, K.S., Liu, R.: Relative \(p\)-adic Hodge theory: foundations. Astérisque 371, 239 (2015)

    MathSciNet  Google Scholar 

  44. Liu, R., Zhu, X.: Rigidity and a Riemann-Hilbert correspondence for \(p\)-adic local systems. Invent. Math. 207(1), 291–343 (2017)

    ADS  MathSciNet  Google Scholar 

  45. Lurie, J.: Higher Topos Theory. Annals of Mathematics Studies, vol. 170. Princeton University Press, Princeton (2009)

    Google Scholar 

  46. Lurie, J.: Higher Algebra (2017). https://www.math.ias.edu/~lurie/papers/HA.pdf

    Google Scholar 

  47. Mann, L.: A \(p\)-adic 6-functor formalism in rigid-analytic geometry. Preprint (2022). https://arxiv.org/abs/2206.02022

  48. Mathew, A.: The Galois group of a stable homotopy theory. Adv. Math. 291, 403–541 (2016)

    MathSciNet  Google Scholar 

  49. Mathew, A.: Faithfully flat descent of almost perfect complexes in rigid geometry. J. Pure Appl. Algebra 226(5), Paper No. 106938, 31 (2022)

    MathSciNet  Google Scholar 

  50. Min, Y., Wang, Y.: Relative \((\varphi ,\Gamma )\)-modules and prismatic \(F\)-crystals. Preprint (2021). https://arxiv.org/abs/2110.06076

  51. Morrow, M., Tsuji, T.: Generalised representations as q-connections in integral \(p\)-adic Hodge theory. Preprint (2020) https://arxiv.org/abs/2010.04059

  52. Nie, T.: Absolute Hodge cycles in prismatic cohomology. Ph.D. thesis (2021). https://dash.harvard.edu/handle/1/37370189

  53. Nizioł, W.: Crystalline conjecture via \(K\)-theory. Ann. Sci. Éc. Norm. Supér. (4) 31(5), 659–681 (1998)

    MathSciNet  Google Scholar 

  54. Ogus, A.: \(F\)-Isocrystals and de Rham cohomology. II. Convergent isocrystals. Duke Math. J. 51(4), 765–850 (1984)

    MathSciNet  Google Scholar 

  55. Ogus, A.: The convergent topos in characteristic \(p\). In: The Grothendieck Festschrift, Vol. III. Progr. Math., vol. 88, pp. 133–162. Birkhäuser, Boston (1990)

    Google Scholar 

  56. Ogus, A.: Crystalline prisms: reflections on the present and past. Preprint (2023). https://arxiv.org/abs/2204.06621

  57. Scholze, P.: \(p\)-Adic Hodge theory for rigid-analytic varieties. Forum Math. Pi 1, e1, 77 (2013)

    MathSciNet  Google Scholar 

  58. Scholze, P.: \(p\)-Adic Hodge theory for rigid-analytic varieties—corrigendum. Forum Math. Pi 4, e6, 4 (2016)

    Google Scholar 

  59. Scholze, P.: Étale cohomology of diamonds. Preprint (2017). https://arxiv.org/abs/1709.07343

  60. Scholze, P., Weinstein, J.: Berkeley Lectures on \(p\)-Adic Geometry. Annals of Mathematics Studies, vol. 207. Princeton University Press, Princeton (2020)

    Google Scholar 

  61. Shiho, A.: Relative log convergent cohomology and relative rigid cohomology I. Preprint (2007). https://arxiv.org/abs/0707.1742

  62. Shimizu, K.: A \(p\)-adic monodromy theorem for de Rham local systems. Compos. Math. 158(12), 2157–2205 (2022)

    MathSciNet  Google Scholar 

  63. Tan, F., Tong, J.: Crystalline comparison isomorphisms in \(p\)-adic Hodge theory: the absolutely unramified case. Algebra Number Theory 13(7), 1509–1581 (2019)

    MathSciNet  Google Scholar 

  64. Tang, L.: Syntomic cycle classes and prismatic Poincaré duality. Preprint (2022). https://arxiv.org/abs/2210.14279

  65. The Stacks Project Authors: Stacks Project (2022). https://stacks.math.columbia.edu

  66. Tian, Y.: Finiteness and duality for the cohomology of prismatic crystals. J. Reine Angew. Math. 800, 217–257 (2023)

    MathSciNet  Google Scholar 

  67. Tsuji, T.: \(p\)-Adic étale cohomology and crystalline cohomology in the semi-stable reduction case. Invent. Math. 137(2), 233–411 (1999)

    ADS  MathSciNet  Google Scholar 

  68. Vasconcelos, W.V.: On finitely generated flat modules. Trans. Am. Math. Soc. 138, 505–512 (1969)

    MathSciNet  Google Scholar 

  69. Xu, D.: On higher direct images of convergent isocrystals. Compos. Math. 155(11), 2180–2213 (2019)

    MathSciNet  Google Scholar 

  70. Zhu, X.: Affine Grassmannians and the geometric Satake in mixed characteristic. Ann. Math. (2) 185(2), 403–492 (2017)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The influence of the work of Bhatt–Scholze [20, 21] on our article is obvious, and we thank them heartily for their pioneering work. We initiated our project during the fall of 2021 after several conversations with Peter Scholze. We are grateful for his support and his many patient explanations throughout the writing of this project, especially his suggestion of the gluing construction in Theorem 4.15 using both the local system and its associated \(F\)-isocrystal. We are indebted to Bhargav Bhatt for many illuminating explanations and suggestions throughout the genesis of this paper. We are also thankful to the anonymous referee for countless remarks and corrections, which substantially enhanced the quality of our manuscript. Further thanks go to Sasha Petrov for suggesting that we should be able to prove the Frobenius isogeny property via Poincaré duality and to Guido Bosco, David Hansen, Hiroki Kato, Shizhang Li, Samuel Marks, Akhil Mathew, Yuchen Wu and Bogdan Zavyalov for helpful discussions and correspondence. We gratefully acknowledge funding through the Max Planck Institute for Mathematics in Bonn, Germany, during the preparation of this work. Additional support came from the University of Chicago (H.G.) and the National Science Foundation under Grant No. DMS-1926686 and the IAS School of Mathematics (E.R.) in the revision stage of the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuel Reinecke.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, H., Reinecke, E. A prismatic approach to crystalline local systems. Invent. math. 236, 17–164 (2024). https://doi.org/10.1007/s00222-024-01238-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-024-01238-4

Navigation