Log in

Strongly divisible lattices and crystalline cohomology in the imperfect residue field case

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

Let k be a perfect field of characteristic \(p \ge 3\), and let K be a finite totally ramified extension of \(K_0 = W(k)[p^{-1}]\). Let \(L_0\) be a complete discrete valuation field over \(K_0\) whose residue field has a finite p-basis, and let \(L = L_0\otimes _{K_0} K\). For \(0 \le r \le p-2\), we classify \(\textbf{Z}_p\)-lattices of semistable representations of \(\textrm{Gal}(\overline{L}/L)\) with Hodge–Tate weights in [0, r] by strongly divisible lattices. This generalizes the result of Liu (Compos Math 144:61–88, 2008). Moreover, if \(\mathcal {X}\) is a proper smooth formal scheme over \(\mathcal {O}_L\), we give a cohomological description of the strongly divisible lattice associated to \(H^i_{\acute{\text {e}}\text {t}}(\mathcal {X}_{\overline{L}}, \textbf{Z}_p)\) for \(i \le p-2\), under the assumption that the crystalline cohomology of the special fiber of \(\mathcal {X}\) is torsion-free in degrees i and \(i+1\). This generalizes a result in Cais and Liu (Trans Am Math Soc 371:1199–1230, 2019).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berthelot, P., Messing, W.: Théorie de Dieudonné cristalline III: théorèmes d’équivalence et de pleine fidélité. Progr. Math. 86, 173–247 (1990)

    Google Scholar 

  2. Berthelot, P., Ogus, A.: Notes on crystalline cohomology, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, MR491705 (1978)

  3. Berthelot, P., Ogus, A.: F-isocrystals and de rham cohomology. I. Invent. Math. 72, 159–199 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bhatt, B., Morrow, M., Scholze, P.: Integral \(p\)-adic Hodge theory. Publ. Math. Inst. Hautes Etudes Sci. 128, 219–397 (2018)

    Article  MathSciNet  Google Scholar 

  5. Breuil, C.: Représentations \(p\)-adiques semi-stables et transversalité de griffiths. Math. Ann. 307, 191–224 (1997)

    Article  MathSciNet  Google Scholar 

  6. Breuil, C.: Représentations semi-stables et modules fortement divisibles. Invent. Math. 136, 89–122 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  7. Breuil, C.: Integral \(p\)-adic hodge theory. Advanced Studies in Pure Mathematics (Tokyo), vol. 36, Mathematical Society of Japan, pp. 51–80 (2002)

  8. Brinon, O.: Représentations cristallines dans le cas d’un corps résiduel imparfait. Ann. Inst. Fourier (Grenoble) 56(4), 919–999 (2006)

    Article  MathSciNet  Google Scholar 

  9. Brinon, O: Représentations \(p\)-adiques cristallines et de de rham dans le cas relatif. Mém. Soc. Math. Fr. 112 (2008)

  10. Cais, B., Liu, T.: Breuil–Kisin modules via crystalline cohomology. Trans. Am. Math. Soc. 371, 1199–1230 (2019)

    Article  MathSciNet  Google Scholar 

  11. Colmez, P., Fontaine, J.-M.: Construction des représentations \(p\)-adiques semi-stables. Invent. Math. 140, 1–43 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  12. Du, H., Liu, T., Moon, Y.S., Shimizu, K.: Completed prismatic \(F\)-crystals and crystalline \(\textbf{Z}_p\)-local systems, preprint. ar**v:2203.03444 (2022)

  13. Faltings, G.: Crystalline cohomology and \(p\)-adic Galois representations. In: Algebraic Analysis, Geometry, and Number Theory (Baltimore). The Johns Hopkins University Press, pp. 25–80 (1988)

  14. Fontaine, J.-M.: Représentations \(p\)-adiques des corps locaux. I. The Grothendieck Festschrift, vol. II. Progr. Math., vol. 87, Birkhäuser, Boston, pp. 249–309 (1990)

  15. Gao, H.: Integral \(p\)-adic hodge theory in the imperfect residue field case. ar**v:2007.06879v2 (2020)

  16. Kim, W.: The relative Breuil–Kisin classification of \(p\)-divisible groups and finite flat group schemes. Int. Math. Res. Not. IMRN 2015(17), 8152–8232 (2015)

    Article  MathSciNet  Google Scholar 

  17. Kisin, M: Crystalline representations and \(F\)-crystals. In: Algebraic Geometry and Number Theory. Progr. Math., vol. 253, Birkhäuser, Boston, pp. 459–496 (2006)

  18. Li, S., Liu, T.: Comparison of prismatic cohomology and derived de Rham cohomology, preprint. ar**v:2012.14064v2 (2021)

  19. Liu, T.: Torsion \(p\)-adic Galois representations and a conjecture of Fontaine. Ann. Sci. Éc. Norm. Supér. 40, 633–674 (2007)

    Article  MathSciNet  Google Scholar 

  20. Liu, T.: On lattices in semi-stable representations: a proof of a conjecture of Breuil. Compos. Math. 144, 61–88 (2008)

    Article  MathSciNet  Google Scholar 

  21. Moon, Y.S.: A note on purity of crystalline local systems, preprint, ar**v:2210.07368 (2022)

  22. The Stacks project authors: The stacks project. https://stacks.math.columbia.edu

  23. Tsuji, T.: Crystalline sheaves and filtered convergent \(F\)-isocrystals on log schemes, preprint

Download references

Acknowledgements

I would like to thank Bryden Cais and Tong Liu for many helpful discussions and communications during the preparation of this paper. I also thank the anonymous referee for valuable suggestions to improve the paper. The author was partially supported by AMS-Simons Travel Grant. Lastly, I would like to thank Soo Young Kim heartily for her continuous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Suk Moon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moon, Y.S. Strongly divisible lattices and crystalline cohomology in the imperfect residue field case. Sel. Math. New Ser. 30, 12 (2024). https://doi.org/10.1007/s00029-023-00899-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-023-00899-y

Mathematics Subject Classification

Navigation