Log in

Reliability Function of Quantum Information Decoupling via the Sandwiched Rényi Divergence

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Quantum information decoupling is a fundamental quantum information processing task, which also serves as a crucial tool in a diversity of topics in quantum physics. In this paper, we characterize the reliability function of catalytic quantum information decoupling, that is, the best exponential rate under which perfect decoupling is asymptotically approached. We have obtained the exact formula when the decoupling cost is below a critical value. In the situation of high cost, we provide meaningful upper and lower bounds. This result is then applied to quantum state merging, exploiting its inherent connection to decoupling. In addition, as technical tools, we derive the exact exponents for the smoothing of the conditional min-entropy and max-information, and we prove a novel bound for the convex-split lemma. Our results are given in terms of the sandwiched Rényi divergence, providing it with a new type of operational meaning in characterizing how fast the performance of quantum information tasks approaches the perfect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Horodecki, M., Oppenheim, J., Winter, A.: Partial quantum information. Nature 436, 673 (2005)

    Article  ADS  Google Scholar 

  2. Horodecki, M., Oppenheim, J., Winter, A.: Quantum state merging and negative information. Commun. Math. Phys. 269(1), 107–136 (2007)

  3. Abeyesinghe, A., Devetak, I., Hayden, P., Winter, A.: The mother of all protocols: restructuring quantum information’s family tree. Proc. R. Soc. A 465, 2537–2563 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  4. Devetak, I., Yard, J.: Exact cost of redistributing multipartite quantum states. Phys. Rev. Lett. 100, 230501 (2008)

    Article  ADS  Google Scholar 

  5. Yard, J., Devetak, I.: Optimal quantum source coding with quantum side information at the encoder and decoder. IEEE Trans. Inf. Theory 55(11), 5339–5351 (2009)

    Article  MathSciNet  Google Scholar 

  6. Bennett, C.H., Devetak, I., Harrow, A.W., Shor, P.W., Winter, A.: The quantum reverse Shannon theorem and resource tradeoffs for simulating quantum channels. IEEE Trans. Inf. Theory 60(5), 2926–2959 (2014)

    Article  MathSciNet  Google Scholar 

  7. Berta, M., Christandl, M., Renner, R.: The quantum reverse Shannon theorem based on one-shot information theory. Commun. Math. Phys. 306(3), 579–615 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  8. Berta, M., Brandão, F.G.S.L., Majenz, C., Wilde, M.M.: Conditional decoupling of quantum information. Phys. Rev. Lett. 121, 040504 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  9. Berta, M., Fawzi, O., Wehner, S.: Quantum to classical randomness extractors. IEEE Trans. Inf. Theory 60(2), 1168–1192 (2013)

    Article  MathSciNet  Google Scholar 

  10. del Rio, L., Åberg, J., Renner, R., Dahlsten, O., Vedral, V.: The thermodynamic meaning of negative entropy. Nature 474, 61 (2011)

    Article  Google Scholar 

  11. Brandão, F.G.S.L., Horodecki, M.: An area law for entanglement from exponential decay of correlations. Nat. Phys. 9, 721 (2013)

    Article  Google Scholar 

  12. Brandão, F.G.S.L., Horodecki, M.: Exponential decay of correlations implies area law. Commun. Math. Phys. 333(2), 761–798 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  13. Åberg, J.: Truly work-like work extraction via a single-shot analysis. Nat. Commun. 4, 1925 (2013)

    Article  ADS  Google Scholar 

  14. del Rio, L., Hutter, A., Renner, R., Wehner, S.: Relative thermalization. Phys. Rev. E 94, 022104 (2016)

    Article  ADS  Google Scholar 

  15. Hayden, P., Preskill, J.: Black holes as mirrors: quantum information in random subsystems. JHEP 09, 120 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  16. Braunstein, S.L., Pati, A.K.: Quantum information cannot be completely hidden in correlations: implications for the black-hole information paradox. Phys. Rev. Lett. 98, 080502 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  17. Braunstein, S.L., Pirandola, S., Życzkowski, K.: Better late than never: information retrieval from black holes. Phys. Rev. Lett. 110, 101301 (2013)

    Article  ADS  Google Scholar 

  18. Brádler, K., Adami, C.: One-shot decoupling and page curves from a dynamical model for black hole evaporation. Phys. Rev. Lett. 116, 101301 (2016)

    Article  ADS  Google Scholar 

  19. Dupuis, F., Berta, M., Wullschleger, J., Renner, R.: One-shot decoupling. Commun. Math. Phys. 328(1), 251–284 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  20. Anshu, A., Devabathini, V.K., Jain, R.: Quantum communication using coherent rejection sampling. Phys. Rev. Lett. 119, 120506 (2017)

    Article  ADS  Google Scholar 

  21. Majenz, C., Berta, M., Dupuis, F., Renner, R., Christandl, M.: Catalytic decoupling of quantum information. Phys. Rev. Lett. 118, 080503 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  22. Mojahedian, M.M., Beigi, S., Gohari, A., Yassaee, M.H., Aref, M.R.: A correlation measure based on vector-valued \(L_p\)-norms. IEEE Trans. Inf. Theory 65(12), 7985–8004 (2019)

    Article  Google Scholar 

  23. Wakakuwa, E., Nakata, Y.: One-shot randomized and nonrandomized partial decoupling. Commun. Math. Phys. 386(2), 589–649 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  24. Dupuis, F.: Privacy amplification and decoupling without smoothing. IEEE Trans. Inf. Theory 69(12), 7784–7792 (2023)

    Article  MathSciNet  Google Scholar 

  25. Szehr, O., Dupuis, F., Tomamichel, M., Renner, R.: Decoupling with unitary approximate two-designs. New J. Phys. 15, 053022 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  26. Brown, W., Fawzi, O.: Decoupling with random quantum circuits. Commun. Math. Phys. 340(3), 867–900 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  27. Nakata, Y., Hirche, C., Morgan, C., Winter, A.: Decoupling with random diagonal unitaries. Quantum 1, 18 (2017)

    Article  Google Scholar 

  28. Sharma, N.: Random coding exponents galore via decoupling (2015). ar**v:1504.07075

  29. Anshu, A., Berta, M., Jain, R., Tomamichel, M.: Partially smoothed information measures. IEEE Trans. Inf. Theory 66(8), 5022–5036 (2020)

    Article  MathSciNet  Google Scholar 

  30. Shannon, C.E.: Probability of error for optimal codes in a Gaussian channel. Bell Syst. Tech. J. 38(3), 611–656 (1959)

    Article  MathSciNet  Google Scholar 

  31. Gallager, R.: Information Theory and Reliable Communication. Wiley, New York (1968)

    Google Scholar 

  32. Burnashev, M., Holevo, A.S.: On the reliability function for a quantum communication channel. Probl. Inf. Transm. 34(2), 97–107 (1998)

    MathSciNet  Google Scholar 

  33. Holevo, A.S.: Reliability function of general classical-quantum channel. IEEE Trans. Inf. Theory 46(6), 2256–2261 (2000)

    Article  MathSciNet  Google Scholar 

  34. Winter, A.: Coding theorems of quantum information theory. PhD Thesis, Universität Bielefeld (1999)

  35. Dalai, M.: Lower bounds on the probability of error for classical and classical-quantum channels. IEEE Trans. Inf. Theory 59(12), 8027–8056 (2013)

    Article  MathSciNet  Google Scholar 

  36. Hayashi, M.: Precise evaluation of leaked information with secure randomness extraction in the presence of quantum attacker. Commun. Math. Phys. 333(1), 335–350 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  37. Dalai, M., Winter, A.: Constant compositions in the sphere packing bound for classical-quantum channels. IEEE Trans. Inf. Theory 63(9), 5603–5617 (2017)

    MathSciNet  Google Scholar 

  38. Cheng, H.-C., Hsieh, M.-H., Tomamichel, M.: Quantum sphere-packing bounds with polynomial prefactors. IEEE Trans. Inf. Theory 65(5), 2872–2898 (2019)

    Article  MathSciNet  Google Scholar 

  39. Cheng, H.-C., Hanson, E.P., Datta, N., Hsieh, M.-H.: Non-asymptotic classical data compression with quantum side information. IEEE Trans. Inf. Theory 67(2), 902–930 (2020)

    Article  MathSciNet  Google Scholar 

  40. Koenig, R., Wehner, S.: A strong converse for classical channel coding using entangled inputs. Phys. Rev. Lett. 103, 070504 (2009)

    Article  ADS  Google Scholar 

  41. Sharma, N., Warsi, N.A.: Fundamental bound on the reliability of quantum information transmission. Phys. Rev. Lett. 110, 080501 (2013)

    Article  ADS  Google Scholar 

  42. Wilde, M.K., Winter, A., Yang, D.: Strong converse for the classical capacity of entanglement-breaking and Hadamard channels via a sandwiched Rényi relative entropy. Commun. Math. Phys. 331(2), 593–622 (2014)

    Article  ADS  Google Scholar 

  43. Gupta, M.K., Wilde, M.M.: Multiplicativity of completely bounded \(p\)-norms implies a strong converse for entanglement-assisted capacity. Commun. Math. Phys. 334(2), 867–887 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  44. Cooney, T., Mosonyi, M., Wilde, M.M.: Strong converse exponents for a quantum channel discrimination problem and quantum-feedback-assisted communication. Commun. Math. Phys. 344(3), 797–829 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  45. Mosonyi, M., Ogawa, T.: Strong converse exponent for classical-quantum channel coding. Commun. Math. Phys. 355(1), 373–426 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  46. Müller-Lennert, M., Dupuis, F., Szehr, O., Fehr, S., Tomamichel, M.: On quantum Rényi entropies: a new generalization and some properties. J. Math. Phys. 54, 122203 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  47. Li, K., Yao, Y., Hayashi, M.: Tight exponential analysis for smoothing the max-relative entropy and for quantum privacy amplification. IEEE Trans. Inf. Theory 69(3), 1680–1694 (2023)

    Article  MathSciNet  Google Scholar 

  48. Mosonyi, M., Ogawa, T.: Quantum hypothesis testing and the operational interpretation of the quantum Rényi relative entropies. Commun. Math. Phys. 334(3), 1617–1648 (2015)

    Article  ADS  Google Scholar 

  49. Mosonyi, M., Ogawa, T.: Two approaches to obtain the strong converse exponent of quantum hypothesis testing for general sequences of quantum states. IEEE Trans. Inf. Theory 61(12), 6975–6994 (2015)

    Article  MathSciNet  Google Scholar 

  50. Hayashi, M., Tomamichel, M.: Correlation detection and an operational interpretation of the Rényi mutual information. J. Math. Phys. 57, 102201 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  51. Gilchrist, A., Langford, N.K., Nielsen, M.A.: Distance measures to compare real and ideal quantum processes. Phys. Rev. A 71, 062310 (2005)

    Article  ADS  Google Scholar 

  52. Tomamichel, M., Colbeck, R., Renner, R.: A fully quantum asymptotic equipartition property. IEEE Trans. Inf. Theory 55(12), 5840–5847 (2009)

    Article  MathSciNet  Google Scholar 

  53. Uhlmann, A.: The “transition probability’’ in the state space of a \(^\ast \)-algebra. Rep. Math. Phys. 9(2), 273–279 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  54. Stinespring, F.: Positive functions on C\(^*\)-algebras. Proc. Am. Math. Soc. 6(2), 211–216 (1955)

    MathSciNet  Google Scholar 

  55. Hayashi, M.: Optimal sequence of quantum measurements in the sense of Stein’s lemma in quantum hypothesis testing. J. Phys. A: Math. Gen. 35, 10759 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  56. Christandl, M., König, R., Renner, R.: Postselection technique for quantum channels with applications to quantum cryptography. Phys. Rev. Lett. 102, 020504 (2009)

    Article  ADS  Google Scholar 

  57. Hayashi, M.: Universal coding for classical-quantum channel. Commun. Math. Phys. 289(3), 1087–1098 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  58. Beigi, S.: Sandwiched Rényi divergence satisfies data processing inequality. J. Math. Phys. 54, 122202 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  59. Umegaki, H.: Conditional expectation in an operator algebra. Tohoku Math. J. 6(2), 177–181 (1954)

    MathSciNet  Google Scholar 

  60. Datta, N.: Min- and max-relative entropies and a new entanglement monotone. IEEE Trans. Inf. Theory 55(6), 2816–2826 (2009)

    Article  MathSciNet  Google Scholar 

  61. Ciganović, N., Beaudry, N.J., Renner, R.: Smooth max-information as one-shot generalization for mutual information. IEEE Trans. Inf. Theory 60(3), 1573–1581 (2013)

    Article  Google Scholar 

  62. Groisman, B., Popescu, S., Winter, A.: Quantum, classical, and total amount of correlations in a quantum state. Phys. Rev. A 72, 032317 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  63. Hayashi, M., Tan, V.Y.F.: Equivocations, exponents, and second-order coding rates under various Rényi information measures. IEEE Trans. Inf. Theory 63(2), 975–1005 (2016)

    Article  Google Scholar 

  64. Wang, K., Wang, X., Wilde, M.M.: Quantifying the unextendibility of entanglement. ar**v:1911.07433, 2019

  65. Khatri, S., Wilde, M.M.: Principles of quantum communication theory: a modern approach (2020). ar**v:2011.04672

  66. Anshu, A., Jain, R., Warsi, N.A.: A generalized quantum Slepian–Wolf. IEEE Trans. Inf. Theory 64(3), 1436–1453 (2017)

    Article  MathSciNet  Google Scholar 

  67. Anshu, A., Jain, R., Warsi, N.A.: Building blocks for communication over noisy quantum networks. IEEE Trans. Inf. Theory 65(2), 1287–1306 (2018)

    Article  MathSciNet  Google Scholar 

  68. Anshu, A., Jain, R., Warsi, N.A.: Convex-split and hypothesis testing approach to one-shot quantum measurement compression and randomness extraction. IEEE Trans. Inf. Theory 65(9), 5905–5924 (2019)

    Article  MathSciNet  Google Scholar 

  69. Anshu, A., Hsieh, M.-H., Jain, R.: Quantifying resources in general resource theory with catalysts. Phys. Rev. Lett. 121, 190504 (2018)

    Article  ADS  Google Scholar 

  70. Berta, M., Majenz, C.: Disentanglement cost of quantum states. Phys. Rev. Lett. 121, 190503 (2018)

    Article  ADS  Google Scholar 

  71. Faist, P., Berta, M., Brandao, F.G.S.L.: Thermodynamic implementations of quantum processes. Commun. Math. Phys. 384(3), 1709–1750 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  72. Lipka-Bartosik, P., Skrzypczyk, P.: All states are universal catalysts in quantum thermodynamics. Phys. Rev. X 11, 011061 (2021)

    Google Scholar 

  73. Frank, R.L., Lieb, E.H.: Monotonicity of a relative Rényi entropy. J. Math. Phys. 54, 122201 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  74. Renner, R.: Security of quantum key distribution. PhD Thesis, ETH Zurich (2005)

  75. Hayashi, M.: Security analysis of \(\varepsilon \)-almost dual \(\text{ universal}_2\) hash functions: smoothing of min entropy versus smoothing of Rényi entropy of order 2. IEEE Trans. Inf. Theory 62(6), 3451–3476 (2016)

    Article  Google Scholar 

  76. Chen, P.-N.: Generalization of Gärtner-Ellis theorem. IEEE Trans. Inf. Theory 46(7), 2752–2760 (2000)

    Article  Google Scholar 

  77. Li, K., Yao, Y.: Reliable simulation of quantum channels: the error exponent (2021). ar**v:2112.04475

  78. Bennett, C.H., Shor, P.W., Smolin, J.A., Thapliyal, A.V.: Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem. IEEE Trans. Inf. Theory 48(10), 2637–2655 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Mark Wilde for bringing to their attention References [28, 64, 65], as well as to Masahito Hayashi for pointing out [75] and to an anonymous referee for pointing out [22]. They further thank Nilanjana Datta, Masahito Hayashi, Marco Tomamichel, Mark Wilde, **ao **ong and Dong Yang for comments or discussions on related topics. The research of KL was supported by the National Natural Science Foundation of China (Nos. 61871156, 12031004), and the research of YY was supported by the National Natural Science Foundation of China (Nos. 61871156, 12071099).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Li.

Additional information

Communicated by N. Linden.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Boundedness of the Upper Bound \(E_u(r)\)

Boundedness of the Upper Bound \(E_u(r)\)

Proposition 21

Let \(\rho _{RA}\in \mathcal {S}(RA)\) be given. The function \(E_u(r)=\sup \limits _{s\ge 0}\big \{s\big (r-\frac{1}{2}I_{1+s}(R:A)_\rho \big )\big \}\) is bounded in the interval \((-\infty , \frac{1}{2}I_\textrm{max}(R:A)_\rho )\).

Proof

We show that there is a constant C, such that for any \(\epsilon >0\), \(E_u\big (\frac{1}{2}I_\textrm{max}(R:A)_\rho -\epsilon \big )\le C\). Proposition 16 establishes that

$$\begin{aligned} E_u(r)=\lim _{n\rightarrow \infty }\frac{-1}{2n}\log {\text {Tr}}\left[ \mathcal {E}^n\big (\rho _{AB}^{\otimes n}\big ) \Big \{\mathcal {E}^n\big (\rho _{AB}^{\otimes n}\big )\ge 2^{n\cdot 2r} \rho _A^{\otimes n}\otimes \omega ^{(n)}_{B^n}\Big \} \right] , \end{aligned}$$
(A1)

where \(\omega ^{(n)}_{B^n}\) is the universal symmetric state of Lemma 1 and \(\mathcal {E}^n\) is the pinching map associated with \(\rho _A^{\otimes n}\otimes \omega ^{(n)}_{B^n}\). Setting \(M_A=\rho _A\) and letting \(s\rightarrow \infty \) in Lemma 17, we get

$$\begin{aligned} \frac{1}{n}D_\textrm{max}\Big (\mathcal {E}^n(\rho _{AB}^{\otimes n})\big \Vert \rho _A^{\otimes n} \otimes \omega ^{(n)}_{B^n}\Big ) = I_\textrm{max}(A:B)_\rho +O\Big (\frac{\log n}{n}\Big ). \end{aligned}$$

This implies that, for arbitrary \(\epsilon >0\), there exists a common eigenvector \(|\varphi _n\rangle \) of \(\mathcal {E}^n(\rho _{AB}^{\otimes n})\) and \(\rho _A^{\otimes n}\otimes \omega ^{(n)}_{B^n}\), such that for n big enough,

$$\begin{aligned} \Big \{\mathcal {E}^n\big (\rho _{AB}^{\otimes n}\big )\ge 2^{n(I_\textrm{max}(A:B)_\rho -2\epsilon )}\rho _A^{\otimes n}\otimes \omega ^{(n)}_{B^n}\Big \} \ge | \varphi _n\rangle \!\langle \varphi _n | \end{aligned}$$
(A2)

and

$$\begin{aligned} \begin{aligned} \langle \varphi _n|\mathcal {E}^n\big (\rho _{AB}^{\otimes n}\big )|\varphi _n\rangle&\ge 2^{n(I_\textrm{max}(A:B)_\rho -2\epsilon )} \langle \varphi _n|\rho _A^{\otimes n}\otimes \omega ^{(n)}_{B^n}|\varphi _n\rangle \\&\ge 2^{n(I_\textrm{max}(A:B)_\rho -2\epsilon )} \lambda _\textrm{min}\big (\rho _A^{\otimes n}\otimes \omega ^{(n)}_{B^n}\big )\\&\ge 2^{n(I_\textrm{max}(A:B)_\rho -2\epsilon )} \big (\lambda _\textrm{min}(\rho _A)\big )^n\frac{1}{g_{n,|B|}\,|B|^n}. \end{aligned}\end{aligned}$$
(A3)

In Eq. (A3), we have used the fact \(g_{n,|B|}\omega ^{(n)}_{B^n}\ge (\frac{\mathbbm {1}_B}{|B|})^{\otimes n}\) and \(\lambda _\textrm{min}(X)\) denotes the minimal eigenvalue of X. Combining Eq. (A1), Eq. (A2) and Eq. (A3), we obtain

$$\begin{aligned} \begin{aligned} E_u\big (\frac{1}{2}I_\textrm{max}(A:B)_\rho -\epsilon \big )&\le \lim _{n\rightarrow \infty }\frac{-1}{2n}\log \langle \varphi _n|\mathcal {E}^n\big (\rho _{AB}^{\otimes n}\big )|\varphi _n\rangle \\&\le \frac{1}{2}\log \frac{|B|}{\lambda _\textrm{min}(\rho _A)} -\frac{1}{2}I_\textrm{max}(A:B)_\rho +\epsilon . \end{aligned}\end{aligned}$$
(A4)

At last, since \(E_u(r)\) is monotonically increasing, we can choose \(C=\frac{1}{2}\log \frac{|B|}{\lambda _\textrm{min}(\rho _A)} -\frac{1}{2}I_\textrm{max}(A:B)_\rho \). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Yao, Y. Reliability Function of Quantum Information Decoupling via the Sandwiched Rényi Divergence. Commun. Math. Phys. 405, 160 (2024). https://doi.org/10.1007/s00220-024-05029-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00220-024-05029-z

Navigation