Log in

Quantum channels and some absolute properties of quantum states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum systems are vulnerable against environmental interactions which may result in depletion of potential resources. The decay in the resources may be to the extent that they cannot be retrieved even with a non-local unitary action on the whole system. Two important figure of merits in the context of quantum information are the fully entangled fraction (FEF) and conditional entropy of a composite quantum system. While FEF plays a key role in teleportation, negativity of conditional entropy assumes significance in state merging and dense coding. A state may lose such merits and may move to an absolute regime, where even a global unitary fails to reclaim those merits. In the present work, we probe the action of some quantum channels in two qubits and two qudits and find that some quantum states move to the absolute regime under the action. Since global unitary operations are unable to retrieve them back to the non-absolute regime, we provide a prescription for the retrieval using an entanglement swap** network. We also provide an explicit illustration of our prescription. Furthermore, we extend the notion of absoluteness to conditional Rényi entropies and find the required condition for a state to have absolute conditional Rényi entropy non-negative property. Exploiting the Bloch-Fano decomposition of density matrices, we characterize such states. We then extend the work to include the marginals of a tripartite system and provide for their characterization with respect to the aforementioned absolute properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data sharing was not applicable to this article as no data sets were generated or analyzed during the current study.

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  2. Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2017)

    Google Scholar 

  3. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009). https://doi.org/10.1103/RevModPhys.81.865

    Article  ADS  MathSciNet  Google Scholar 

  4. Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. 86, 419 (2014). https://doi.org/10.1103/RevModPhys.86.419

    Article  ADS  Google Scholar 

  5. Uola, R., Costa, A.C., Nguyen, H.C., Gühne, O.: Quantum steering. Rev. Mod. Phys. 92, 015001 (2020). https://doi.org/10.1103/RevModPhys.92.015001

    Article  ADS  MathSciNet  Google Scholar 

  6. Vempati, M., Ganguly, N., Chakrabarty, I., Pati, A.K.: Witnessing negative conditional entropy. Phys. Rev. A 104, 012417 (2021). https://doi.org/10.1103/PhysRevA.104.012417

    Article  ADS  MathSciNet  Google Scholar 

  7. Streltsov, A., Adesso, G., Plenio, M.B.: Colloquium: quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2017). https://doi.org/10.1103/RevModPhys.89.041003

    Article  ADS  MathSciNet  Google Scholar 

  8. Chitambar, E., Gour, G.: Quantum resource theories. Rev. Mod. Phys. 91, 025001 (2019). https://doi.org/10.1103/RevModPhys.91.025001

    Article  ADS  MathSciNet  Google Scholar 

  9. Gyongyosi, L., Imre, S., Nguyen, H.V.: A survey on quantum channel capacities. IEEE Commun. Surv. Tutor. 20, 1149 (2018). https://doi.org/10.1109/COMST.2017.2786748

    Article  Google Scholar 

  10. Shor, P.W.: Additivity of the classical capacity of entanglement-breaking quantum channels. J. Math. Phys. 43, 4334 (2002). (https://aip.scitation.org/doi/10.1063/1.1498000)

    Article  ADS  MathSciNet  Google Scholar 

  11. Pal, R., Ghosh, S.: Non-locality breaking qubit channels: the case for CHSH inequality. J. Phys. A: Math. Theor. 48, 155302 (2015). (https://iopscience.iop.org/article/10.1088/1751-8113/48/15/155302/pdf)

    Article  ADS  MathSciNet  Google Scholar 

  12. Guha, T., Bhattacharya, B., Das, D., Bhattacharya, S.S., Mukherjee, A., Roy, A., Mukherjee, K., Ganguly, N., Majumdar, A.S.: Environmental effects on nonlocal correlations. Quanta 8, 57 (2019). https://doi.org/10.12743/quanta.v8i1.86

    Article  MathSciNet  Google Scholar 

  13. Holmes, R.B.: Geometric Functional Analysis and its Applications. Springer, New York (1975)

    Book  Google Scholar 

  14. Zyczkowski, K., Horodecki, P., Sanpera, A., Lewenstein, M.: Volume of the set of separable states. Phys. Rev. A 58, 883 (1998). https://doi.org/10.1103/PhysRevA.58.883

    Article  ADS  MathSciNet  Google Scholar 

  15. Kus, M., Zyczkowski, K.: Geometry of entangled states. Phys. Rev. A 63, 032307 (2001). https://doi.org/10.1103/PhysRevA.63.032307

    Article  ADS  MathSciNet  Google Scholar 

  16. Verstraete, F., Audenaert, K., De Moor, B.: Maximally entangled mixed states of two qubits. Phys. Rev. A 64, 012316 (2001). https://doi.org/10.1103/PhysRevA.64.012316

    Article  ADS  Google Scholar 

  17. Johnston, N.: Separability from spectrum for qubit-qudit states. Phys. Rev. A 88, 062330 (2013). https://doi.org/10.1103/PhysRevA.88.062330

    Article  ADS  Google Scholar 

  18. Hildebrand, R.: Positive partial transpose from spectra. Phys. Rev. A 76, 052325 (2007). https://doi.org/10.1103/PhysRevA.76.052325

    Article  ADS  MathSciNet  Google Scholar 

  19. Knill, E.: Separability from spectrum, http://qig.itp.uni-hannover.de/qiproblems/15(2003)

  20. Filippov, S.N., Magadov, K.Y., Jivulescu, M.A.: Absolutely separating quantum maps and channels. New J. Phys. 19, 083010 (2017). https://doi.org/10.1088/1367-2630/aa7e06

    Article  ADS  MathSciNet  Google Scholar 

  21. Hildebrand, R.: Positive partial transpose from spectra. Phys. Rev. A 76, 052325 (2007). https://doi.org/10.1103/PhysRevA.76.052325

    Article  ADS  MathSciNet  Google Scholar 

  22. Patro, S., Chakrabarty, I., Ganguly, N.: Non-negativity of conditional von Neumann entropy and global unitary operations. Phys. Rev. A 96, 062102 (2017). https://doi.org/10.1103/PhysRevA.96.062102

    Article  ADS  MathSciNet  Google Scholar 

  23. Vempati, M., Shah, S., Ganguly, N., Chakrabarty, I.: A-unital operations and quantum conditional entropy. Quantum 6, 641 (2022). https://doi.org/10.22331/q-2022-02-02-641

    Article  Google Scholar 

  24. Bohnet-Waldraff, F., Giraud, O., Braun, D.: Absolutely classical spin states. Phys. Rev. A 95, 012318 (2017). https://doi.org/10.1103/PhysRevA.95.012318

    Article  ADS  Google Scholar 

  25. Johnston, N., Moein, S., Pereira, R., Plosker, S.: Absolutely k-incoherent quantum states and spectral inequalities for the factor width of a matrix. Phys. Rev. A 106, 052417 (2022). https://doi.org/10.1103/PhysRevA.106.052417

    Article  ADS  MathSciNet  Google Scholar 

  26. Verstraete, F., Wolf, M.M.: Entanglement versus bell violations and their behavior under local filtering operations. Phys. Rev. Lett. 89, 170401 (2002). https://doi.org/10.1103/PhysRevLett.89.170401

    Article  ADS  Google Scholar 

  27. Ganguly, N., et al.: Bell-CHSH violation under global unitary operations: necessary and sufficient conditions. Int. J. Quantum Inf. 16, 1850040 (2018). https://doi.org/10.1142/S0219749918500405

    Article  Google Scholar 

  28. Bhattacharya, S.S., Mukherjee, A., Roy, A., Paul, B., Mukherjee, K., Chakrabarty, I., Jebaratnam, C., Ganguly, N.: Absolute non-violation of a three-setting steering inequality by two-qubit states. Quantum Inf. Process. 17, 3 (2018). https://doi.org/10.1007/s11128-017-1734-4

    Article  ADS  MathSciNet  Google Scholar 

  29. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001). https://doi.org/10.1103/PhysRevLett.88.017901

    Article  ADS  Google Scholar 

  30. Patro, T., Mukherjee, K., Siddiqui, M.A., Chakrabarty, I., Ganguly, N.: Absolute fully entangled fraction from spectrum. Eur. Phys. J. D 76, 127 (2022). https://doi.org/10.1140/epjd/s10053-022-00458-8

    Article  ADS  Google Scholar 

  31. Ganguly, N., Chatterjee, J., Majumdar, A.S.: Witness of mixed separable states useful for entanglement creation. Phys. Rev. A 89, 052304 (2014). https://doi.org/10.1103/PhysRevA.89.052304

    Article  ADS  Google Scholar 

  32. Halder, S., Mal, S., Sen, A.: Characterizing the boundary of the set of absolutely separable states and their generation via noisy environments. Phys. Rev. A 103, 052431 (2021). https://doi.org/10.1103/PhysRevA.103.052431

    Article  ADS  MathSciNet  Google Scholar 

  33. Horodecki, M., Oppenheim, J., Winter, A.: Partial quantum information. Nature 436, 673 (2005). https://doi.org/10.1038/nature03909

    Article  ADS  Google Scholar 

  34. Bruß, D., D’Ariano, G.M., Lewenstein, M., Macchiavello, C., Sen, A., Sen, U.: Distributed quantum dense coding. Phys. Rev. Lett. 93, 210501 (2004). https://doi.org/10.1103/PhysRevLett.93.210501

    Article  ADS  Google Scholar 

  35. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993). https://doi.org/10.1103/PhysRevLett.70.1895

    Article  ADS  MathSciNet  Google Scholar 

  36. Horodecki, M., Horodecki, P., Horodecki, R.: General teleportation channel, singlet fraction, and quasidistillation. Phys. Rev. A 60, 1888 (1999). https://doi.org/10.1103/PhysRevA.60.1888

    Article  ADS  MathSciNet  Google Scholar 

  37. Cavalcanti, D., Acin, A., Brunner, N., Vertesi, T.: All quantum states useful for teleportation are nonlocal resources. Phys. Rev. A 87, 042104 (2013). https://doi.org/10.1103/PhysRevA.87.042104

    Article  ADS  Google Scholar 

  38. Zukowski, M., Zeilinger, A., Horne, M.A., Ekert, A.K.: Event-ready-detectors Bell experiment via entanglement swap**. Phys. Rev. Lett. 71, 4287 (1993). https://doi.org/10.1103/PhysRevLett.71.4287

    Article  ADS  Google Scholar 

  39. Mukherjee, K.: et.al. , Generation of Nonlocality, https://doi.org/10.48550/ar**v.1702.07782

  40. Dam, Van., Hayden, W.: Renyi-entropic bounds on quantum communication, https://doi.org/10.48550/ar**v.quant-ph/0204093

  41. Horodecki, R., Horodecki, P., Horodecki, M.: Quantum \(\alpha \)-entropy inequalities: independent condition for local realism? Phys. Lett. A 210, 377 (1996). https://doi.org/10.1016/0375-9601(95)00930-2

    Article  ADS  MathSciNet  Google Scholar 

  42. Kumar, Komal, Ganguly, Nirman: Quantum conditional entropies and steerability of states with maximally mixed marginals. Phys. Rev. A 107, 032206 (2023). https://doi.org/10.1103/PhysRevA.107.032206

    Article  ADS  MathSciNet  Google Scholar 

  43. Nielsen, M.A.: An introduction to majorization and its applications to quantum mechanics. Department of Physics, University of Queensland, Australia, Lecture Notes (2002)

  44. Ekert, A., Knight, P.L.: Entangled quantum systems and the Schmidt decomposition. Am. J. Phys. 63, 415 (1995). https://doi.org/10.1119/1.17904

    Article  ADS  MathSciNet  Google Scholar 

  45. Acin, A., Andrianov, A., Costa, L., Jane, E., Latorre, J.I., Tarrrach, R.: Generalized Schmidt decomposition and classification of three-quantum-bit states. Phys. Rev. Lett. 85, 1560 (2000). https://doi.org/10.1103/PhysRevLett.85.1560

    Article  ADS  Google Scholar 

  46. D’Hoker, E., Dong, X., Wu, C.H.: An alternative method for extracting the von Neumann entropy from Rényi entropies. J. High Energy Phys. 2021, 1 (2021). (https://springer.longhoe.net/article/10.1007/JHEP01(2021)042)

    Article  Google Scholar 

  47. Müller-Lennert, M., Dupuis, F., Szehr, O., Fehr, S., Tomamichel, M.: On quantum Rényi entropies: a new generalization and some properties. J. Math. Phys. 54, 122203 (2013). https://doi.org/10.1063/1.4838856

    Article  ADS  MathSciNet  Google Scholar 

  48. Friis, N., Bulusu, S., Bertlmann, R.A.: Geometry of two-qubit states with negative conditional entropy. J. Phys. A: Math. Theor. 50, 125301 (2017). https://doi.org/10.1088/1751-8121/aa5dfd

    Article  ADS  MathSciNet  Google Scholar 

  49. Li, M., Wang, Z., Wang, J., Shen, S., Fei, S.M.: The norms of Bloch vectors and classification of four-qudits quantum states. Europhys. Lett. 125, 20006 (2019). (https://iopscience.iop.org/article/10.1209/0295-5075/125/20006)

    Article  ADS  Google Scholar 

  50. Greenberger, D.M., Horne, M.A., Zeilinger, A.: in Bell’s Theorem, Quantum Theory and Conceptions of the Universe, edited by M. Kafatos (Kluwer Academic, Dordrecht, 1989) p.107; Gerry, C.C., Preparation of a four-atom Greenberger-Horne-Zeilinger state, Physical Review A, 53, 4591 .https://doi.org/10.1103/PhysRevA.53.4591(1996)

  51. Dur, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000). https://doi.org/10.1103/PhysRevA.62.062314

    Article  ADS  MathSciNet  Google Scholar 

  52. Elben, A., et al.: Mixed-state entanglement from local randomized measurements. Phys. Rev. Lett. 125, 200501 (2020). https://doi.org/10.1103/PhysRevLett.125.200501

    Article  ADS  Google Scholar 

  53. Zhou, Y., Zeng, P., Liu, Z.: Single-copies estimation of entanglement negativity. Phys. Rev. Lett. 125, 200502 (2020). https://doi.org/10.1103/PhysRevLett.125.200502

    Article  ADS  MathSciNet  Google Scholar 

  54. Zhou, Y., **ao, B., Li, M.D., Zhao, Q., Yuan, Z.S., Ma, X., Pan, J.W.: A scheme to create and verify scalable entanglement in optical lattice. NPJ Quantum Inf. 8, 99 (2022). https://doi.org/10.1038/s41534-022-00609-0

    Article  ADS  Google Scholar 

  55. Zhou, Y., Zhao, Q., Yuan, X., Ma, X.: Detecting multipartite entanglement structure with minimal resources. NPJ Quantum Inf. 5, 83 (2019). (https://www.nature.com/articles/s41534-019-0200-9)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Tapaswini Patro would like to acknowledge the support from DST-Inspire (INDIA) fellowship No. DST/INSPIRE Fellowship/2019/IF190357. Nirman Ganguly acknowledges support from the project grant received under the SERB(INDIA)-MATRICS scheme vide file number MTR/2022/000101.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally to the manuscript.

Corresponding author

Correspondence to Nirman Ganguly.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare. All co-authors have seen and agree with the contents of the manuscript, and there is no financial interest to report.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patro, T., Mukherjee, K. & Ganguly, N. Quantum channels and some absolute properties of quantum states. Quantum Inf Process 23, 228 (2024). https://doi.org/10.1007/s11128-024-04439-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04439-1

Keywords

Navigation