Log in

A Ti/Nb-functionalized COF material based on IMAC strategy for efficient separation of phosphopeptides and phosphorylated exosomes

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this work, on the basis of an immobilized metal ion affinity chromatography enrichment strategy, a new kind of covalent organic framework (COF) material for enrichment of phosphorylated peptides and exosomes was successfully prepared in a facile method, and Ti4+ and Nb5+ were used as dual-functional ions (denoted as COF-S–S-COOH-Ti4+/Nb5+). With the advantage of unbiased enrichment towards phosphopeptides, COF-S–S-COOH-Ti4+/Nb5+ shows ultra-high selectivity (maximum molar ratio of β-casein: BSA is 1:20,000) and low limit of detection (0.2 fmol). In addition, the material has an excellent phosphopeptide loading capacity (100 μg/mg) and reusability (at least seven times). Furthermore, applying the material to the actual sample, 4 phosphopeptides were selectively extracted from the serum of renal carcinoma patients. At the same time, exosomes with an intact structure in the serum of renal carcinoma patients were successfully isolated rapidly using this strategy. All experiments have shown that COF-S–S-COOH-Ti4+/Nb5+ exhibits exciting potential in practical applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367(6478):eaau6977. https://doi.org/10.1126/science.aau6977.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Zhang N, Sun NR, Deng CH. A hydrophilic magnetic MOF for the consecutive enrichment of exosomes and exosomal phosphopeptides. Chem Commun. 2020;56(90):13999–4002. https://doi.org/10.1039/d0cc06147f.

    Article  CAS  Google Scholar 

  3. Zhang LN, Gu CC, Wen JJ, Liu GX, Liu HY, Li LH. Recent advances in nanomaterial-based biosensors for the detection of exosomes. Anal Bioanal Chem. 2021;413:83–102. https://doi.org/10.1007/s00216-020-03000-0.

    Article  PubMed  CAS  Google Scholar 

  4. Vella LJ, Scicluna BJ, Cheng L, Bawden EG, Masters CL, Ang CS, Willamson N, McLean C, Barnham KJ, Hill AF. A rigorous method to enrich for exosomes from brain tissue. J Extracell Vesicles. 2017;6(1). https://doi.org/10.1080/20013078.2017.1348885.

  5. Zhang N, Hu XF, Chen HL, Deng CH, Sun NAR. Specific enrichment and glycosylation discrepancy profiling of cellular exosomes using a dual-affinity probe. Chem Commun. 2021;57(51):6249–52. https://doi.org/10.1039/d1cc01530c.

    Article  CAS  Google Scholar 

  6. Iraci N, Leonardi T, Gessler F, Vega B, Pluchino S. Focus on extracellular vesicles: physiological role and signalling properties of extracellular membrane vesicles. Int J Mol Sci. 2016;17(2):171. https://doi.org/10.3390/ijms17020171.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Zhao XX, Zhang WQ, Qiu XP, Mei Q, Luo Y, Fu WL. Rapid and sensitive exosome detection with CRISPR/Cas12a. Anal Bioanal Chem. 2020;412:601–9. https://doi.org/10.1007/s00216-019-02211-4.

    Article  PubMed  CAS  Google Scholar 

  8. Zhang N, Sun NR, Deng CH. Rapid isolation and proteome analysis of urinary exosome based on double interactions of Fe3O4@TiO2-DNA aptamer. Talanta. 2021;221:121571. https://doi.org/10.1016/j.talanta.2020.121571.

    Article  PubMed  CAS  Google Scholar 

  9. Wu YL, Liu QJ, Deng CH. L-cysteine-modified metal-organic frameworks as multifunctional probes for efficient identification of N-linked glycopeptides and phosphopeptides in human crystalline lens. Anal Chim Acta. 2019;1061:110–21. https://doi.org/10.1016/j.aca.2019.01.052.

    Article  PubMed  CAS  Google Scholar 

  10. Jiang JB, Sun XN, She XJ, Li JJ, Li Y, Deng CH, Duan GL. Magnetic microspheres modified with Ti(IV) and Nb(V) for enrichment of phosphopeptides. Microchim Acta. 2018;185:309–16. https://doi.org/10.1007/s00604-018-2837-z.

    Article  CAS  Google Scholar 

  11. Chen C, Zhang XF, Dong XF, Zhou H, Li XL, Liang XM. TiO2 simultaneous enrichment, on-line deglycosylation, and sequential analysis of Glyco- and phosphopeptides. Front Chem. 2019;9. https://doi.org/10.3389/fchem.2021.703176.

  12. Wang ZD, Wang JW, Sun NR, Deng CH. A promising nanoprobe based on hydrophilic interaction liquid chromatography and immobilized metal affinity chromatography for capture of glycopeptides and phosphopeptides. Anal Chim Acta. 2019;1067:1–10. https://doi.org/10.1016/j.aca.2019.04.010.

    Article  PubMed  CAS  Google Scholar 

  13. Sun NR, Wang ZD, Wang JW, Chen HM, Wu H, Shen S, Deng CH. Hydrophilic tripeptide combined with magnetic titania as a multipurpose platform for universal enrichment of phospho- and glycopeptides. J Chromatogr A. 2019;1595:1–10. https://doi.org/10.1016/j.chroma.2019.02.039.

    Article  PubMed  CAS  Google Scholar 

  14. Wang BC, Yan YH, Ding CF. Metal organic frameworks as advanced adsorbent materials for separation and analysis of complex samples. J Chromatogr A. 2022;1671: 462971. https://doi.org/10.1016/j.chroma.2022.462971.

    Article  PubMed  CAS  Google Scholar 

  15. Li YL, Liu LL, Wu H, Deng CH. Magnetic mesoporous silica nanocomposites with binary metal oxides core-shell structure for the selective enrichment of endogenous phosphopeptides from human saliva. Anal Chim Acta. 2019;1079:111–9. https://doi.org/10.1016/j.aca.2019.06.045.

    Article  PubMed  CAS  Google Scholar 

  16. Wu YL, Liu QJ, **e YQ, Deng CH. Core-shell structured magnetic metal-organic framework composites for highly selective enrichment of endogenous N-linked glycopeptides and phosphopeptides. Talanta. 2018;190:298–312. https://doi.org/10.1016/j.talanta.2018.08.010.

    Article  PubMed  CAS  Google Scholar 

  17. Grassetti AV, Hards R, Gerber SA. Offline pentafluorophenyl (PFP)-RP prefractionation as an alternative to high-pH RP for comprehensive LC-MS/MS proteomics and phosphoproteomics. Anal Bioanal Chem. 2017;409:4615–25. https://doi.org/10.1007/s00216-017-0407-6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Bijttebier S, Theunis C, Jahouh F, Martins DR, Verhemeldonck M, Grauwen K, Dillen L, Mercken M. Development of immunoprecipitation-two-dimensional liquid chromatography-mass spectrometry methodology as biomarker read-out to quantify phosphorylated tau in cerebrospinal fluid from Alzheimer disease patients. J Chromatogr A. 2021;1651: 462299. https://doi.org/10.1016/j.chroma.2021.462299.

    Article  PubMed  CAS  Google Scholar 

  19. Hennrich ML, Groenewold V, Kops GJ, Heck AJ, Mohammed S. Improving depth in phosphoproteomics by using a strong cation exchange-weak anion exchange-reversed phase multidimensional separation approach. Anal Chem. 2011;83:7137–43. https://doi.org/10.1021/ac2015068.

    Article  PubMed  CAS  Google Scholar 

  20. **ao RL, Pan YN, Li J, Zhang LY, Zhang WB. Layer-by-layer assembled magnetic bimetallic metal-organic framework composite for global phosphopeptide enrichment. J Chromatogr A. 2019;1601:45–52. https://doi.org/10.1016/j.chroma.2019.05.010.

    Article  PubMed  CAS  Google Scholar 

  21. Liu XY, Rossio V, Thakurta SG, Flora A, Foster L, Bomgarden RD, Gygi SP, Paulo JA. Fe3+-NTA magnetic beads as an alternative to spin column-based phosphopeptide enrichment. J Proteomics. 2022;260:104561. https://doi.org/10.1016/j.jprot.2022.104561.

    Article  PubMed  CAS  Google Scholar 

  22. Zhu CH, Wu JN, ** XT, Yan YH, Ding CF, Tang KQ, Zhang D. Post-synthesis of biomimetic chitosan with honeycomb-like structure for sensitive recognition of phosphorylated peptides. J Chromatogr A. 2021;1643: 462072. https://doi.org/10.1016/j.chroma.2021.462072.

    Article  PubMed  CAS  Google Scholar 

  23. Zhang KN, Hu DH, Deng SM, Han M, Wang XF, Liu HL, Liu Y, **e MX. Phytic acid functionalized Fe3O4 nanoparticles loaded with Ti(IV) ions for phosphopeptide enrichment in mass spectrometric analysis. Microchim Acta. 2019;186(2):1. https://doi.org/10.1007/s00604-018-3177-8.

    Article  CAS  Google Scholar 

  24. Jiang DD, Li Z, Jia QA. Sensitive and selective phosphopeptide enrichment strategy by combining polyoxometalates and cysteamine hydrochloride-modified chitosan through layer-by-layer assembly. Anal Chim Acta. 2019;1066:58–68. https://doi.org/10.1016/j.aca.2019.04.001.

    Article  PubMed  CAS  Google Scholar 

  25. Yan S, Luo B, He J, Lan F, Wu Y. Phytic acid functionalized magnetic bimetallic metal-organic frameworks for phosphopeptide enrichment. J Mater Chem B. 2021;9(7):1811–20. https://doi.org/10.1039/d0tb02517h.

    Article  PubMed  CAS  Google Scholar 

  26. Cho KY, Chen LJ, Hu YW, Schnaubelt M, Zhang H. Develo** workflow for simultaneous analyses of phosphopeptides and glycopeptides. ACS Chem Biol. 2019;14(1):58–66. https://doi.org/10.1021/acschembio.8b00902.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Bae SW, Kim JI, Choi I, Sung J, Hong JI, Yeo WS. Zinc ion-immobilized magnetic microspheres for enrichment and identification of multi-phosphorylated peptides by mass spectrometry. Anal Sci. 2017;33:1381–6. https://doi.org/10.2116/analsci.33.1381.

    Article  PubMed  CAS  Google Scholar 

  28. Gao CH, Bai J, He YT, Zheng Q, Ma WD, Lei ZX, Zhang MY, Wu J, Fu FF, Lin Z. Postsynthetic functionalization of Zr4+-immobilized core-shell structured magnetic covalent organic frameworks for selective enrichment of phosphopeptides. ACS Appl Mater Interfaces. 2019;11(14):13735–41. https://doi.org/10.1021/acsami.9b03330.

    Article  PubMed  CAS  Google Scholar 

  29. Wahid A, Sohail A, Wang HY, Guo M, Zhang L, Ji Y, Wang P, **ao H. Titanium(IV) immobilized affinity chromatography facilitated phosphoproteomics analysis of salivary extracellular vesicles for lung cancer. Anal Bioanal Chem. 2022;414(12):3697–708. https://doi.org/10.1007/s00216-022-04013-7.

    Article  PubMed  CAS  Google Scholar 

  30. Posewitz MC, Tempst P. Immobilized gallium (III) affinity chromatography of phosphopeptides. Anal Chem. 1999;71(14):2883–92. https://doi.org/10.1021/ac981409y.

    Article  PubMed  CAS  Google Scholar 

  31. Gao R, Li J, Shi R, Zhang Y, Ouyang FZ, Zhang T, Hu LH, Xu GQ, Liu J. Highly sensitive detection of phosphopeptides with superparamagnetic Fe3O4@mZrO(2) core-shell microspheres-assisted mass spectrometry. J Mater Sci Technol. 2020;59:234–42. https://doi.org/10.1016/j.jmst.2020.02.091.

    Article  Google Scholar 

  32. Lin HZ, Chen HM, Shao X, Deng CH. A capillary column packed with a zirconium (IV)-based organic framework for enrichment of endogenous phosphopeptides. Microchim Acta. 2018;185(12):562. https://doi.org/10.1007/s00604-018-3109-7.

    Article  CAS  Google Scholar 

  33. Lin HZ, Deng CH. Development of Hf4+-immobilized polydopamine-coated magnetic graphene for highly selective enrichment of phosphopeptides. Talanta. 2016;149:91–7. https://doi.org/10.1016/j.talanta.2015.11.037.

    Article  PubMed  CAS  Google Scholar 

  34. Dai JY, Wang MD, Liu HL. Highly selective enrichment of phosphopeptides using Zr4+-immobilized Titania nanoparticles. Talanta. 2017;164:222–7. https://doi.org/10.1016/j.talanta.2016.11.058.

    Article  PubMed  CAS  Google Scholar 

  35. Liu QJ, Sun NR, Gao MX, Deng CH. Magnetic binary metal–organic framework as a novel affinity probe for highly selective capture of endogenous phosphopeptides. ACS Sustain Chem Eng. 2018;6:4382–9. https://doi.org/10.1021/acssuschemeng.8b00023.

    Article  CAS  Google Scholar 

  36. Zheng HY, Wang JX, Gao MX, Zhang XM. Titanium (IV)-functionalized zirconium-organic frameworks as dual-metal affinity probe for recognition of endogenous phosphopeptides prior to mass spectrometric quantification. Microchim Acta. 2019;186(12):829–39. https://doi.org/10.1007/s00604-019-3962-z.

    Article  CAS  Google Scholar 

  37. Liu B, Wang BC, Yan YH, Tang KQ, Ding CF. Efficient separation of phosphopeptides employing a Ti/Nb-functionalized core-shell structure solid-phase extraction nanosphere. Microchim Acta. 2021;188(2):32. https://doi.org/10.1007/s00604-020-04652-6.

    Article  CAS  Google Scholar 

  38. Zhai R, Tian F, Xue RQ, Jiao FL, Hao FR, Zhang YJ, Qian XH. Metal ion-immobilized magnetic nanoparticles for global enrichment and identification of phosphopeptides by mass spectrometry. RSC Adv. 2016;6:1670–7. https://doi.org/10.1039/c5ra22006h.

    Article  CAS  Google Scholar 

  39. Cheng JM, Hu K, Liu QR, Liu YJ, Yang HX, Kong JM. Electrochemical ultrasensitive detection of CYFRA21-1 using Ti3C2Tx-MXene as enhancer and covalent organic frameworks as labels. Anal Bioanal Chem. 2021;413:2543–51. https://doi.org/10.1007/s00216-021-03212-y.

    Article  PubMed  CAS  Google Scholar 

  40. Wang HP, Jiao FL, Gao FY, Lv YY, Wu Q, Zhao Y, Shen YH, Zhang YJ, Qian XH. Titanium (IV) ion-modified covalent organic frameworks for specific enrichment of phosphopeptides. Talanta. 2017;166:133–40. https://doi.org/10.1016/j.talanta.2017.01.043.

    Article  PubMed  CAS  Google Scholar 

  41. Ma WD, Zheng Q, He YT, Li GR, Guo WJ, Lin Z, Zhang L. Size-controllable synthesis of uniform spherical covalent organic frameworks at room temperature for highly efficient and selective enrichment of hydrophobic peptides. J Am Chem Soc. 2019;141(45):18271–7. https://doi.org/10.1021/jacs.9b09189.

    Article  PubMed  CAS  Google Scholar 

  42. Sun Q, Aguila B, Perman J, Earl LD, Abney CW, Cheng YC, Wei H, Nguyen N, Wojtas L, Ma SQ. Postsynthetically modified covalent organic frameworks for efficient and effective mercury removal. J Am Chem Soc. 2017;139(7):2786–93. https://doi.org/10.1021/jacs.6b12885.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (21927805), Natural Science Foundation of Zhejiang Province (LY22B050008), Major science and technology projects in Ningbo (2020Z090), and the K. C. Wong Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fuxing Xu or Yinghua Yan.

Ethics declarations

Ethical approval

Ethically approved human serums used in this research were collected with the consent of volunteers. The study was conducted with the approval of the experimental ethics committee of Ningbo University and its affiliated hospital.

Consent for publication

All of the authors have given approval for the final version of the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1.42 mb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Feng, Q., **e, Z. et al. A Ti/Nb-functionalized COF material based on IMAC strategy for efficient separation of phosphopeptides and phosphorylated exosomes. Anal Bioanal Chem 414, 7885–7895 (2022). https://doi.org/10.1007/s00216-022-04323-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04323-w

Keywords

Navigation