Log in

Facile fabrication of Ti4+-immobilized magnetic nanoparticles by phase-transitioned lysozyme nanofilms for enrichment of phosphopeptides

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this study, titanium (IV)-immobilized magnetic nanoparticles (Ti4+-PTL-MNPs) were firstly synthesized via a one-step aqueous self-assembly of lysozyme nanofilms for efficient phosphopeptide enrichment. Under physiological conditions, lysozymes readily self-organized into phase-transitioned lysozyme (PTL) nanofilms on Fe3O4@SiO2 and Fe3O4@C MNP surfaces with abundant functional groups, including –NH2, –COOH, –OH, and –SH, which can be used as multiple linkers to efficiently chelate Ti4+. The obtained Ti4+-PTL-MNPs possessed high sensitivity of 0.01 fmol μL−1 and remarkable selectivity even at a mass ratio of β-casein to BSA as low as 1:400 for phosphopeptide enrichment. Furthermore, the synthesized Ti4+-PTL-MNPs can also selectively identify low-abundance phosphopeptides from extremely complicated human serum samples and their rapid separation, good reproducibility, and excellent recovery were also proven. This one-step self-assembly of PTL nanofilms facilitated the facile and efficient surface functionalization of various nanoparticles for proteomes/peptidomes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Li XS, Yuan BF, Feng YQ. Recent advances in phosphopeptides enrichment: strategies and techniques. TrAC-Trends Anal Chem. 2016;78:70–83.

    Article  CAS  Google Scholar 

  2. Li YN, Wang Y, Dong MM, Zou HF, Ye ML. Sensitive approaches for the assay of the global protein tyrosine phosphorylation in complex samples using a mutated SH2 domain. Anal Chem. 2017;89:2304–11.

    Article  CAS  PubMed  Google Scholar 

  3. Lyu JW, Wang Y, Mao JW, Yao YT, Wang SJ, Zheng Y, Ye ML. A pseudo-targeted MS method for the sensitive analysis of protein phosphorylation in protein complexes. Anal Chem. 2018;90:6214–21.

    Article  CAS  PubMed  Google Scholar 

  4. Li M, **ong Y, Qing G. Innovative chemical tools to address analytical challenges of protein phosphorylation and glycosylation. Acc Chem Res. 2023;56(18):2514–25.

    Article  CAS  PubMed  Google Scholar 

  5. Demon B, Aebersold R. Mass spectrometry and protein analysis. Science. 2006. https://doi.org/10.1126/science1124619.

  6. Kennedy RT. The 2019 Reviews Issue. Anal Chem. 2019;91:1–1.

    Article  CAS  PubMed  Google Scholar 

  7. Han DQ, Yao ZP. Chiral mass spectrometry: An overview. TrAC-Trends Anal Chem. 2020;123: 115763.

    Article  CAS  Google Scholar 

  8. Gao RF, Li J, Shi R, Zhang Y, Ouyang FZ, Zhang T, Hu LH, Xu GQ, Lian J. Highly sensitive detection of phosphopeptides with superparamagnetic Fe3O4 @mZrO2 core-shell microspheres-assisted mass spectrometry. J Mater Sci Technol. 2020;59:234–42.

    Article  CAS  Google Scholar 

  9. Ng CC, Zhou Y, Yao ZP. Algorithms for de-novo sequencing of peptides by tandem mass spectrometry: A review. Anal Chim Acta. 2023;1268.

  10. Cheng G, Zhang JL, Liu YL, Sun DH, Ni JZ. Synthesis of novel Fe3O4@SiO2@CeO2 microspheres with mesoporous shell for phosphopeptide capturing and labeling. Chem Commun. 2011;47:5732–4.

    Article  CAS  Google Scholar 

  11. Lin H, Yuan K, Deng C. Preparation of a TiO2-NH2 modified MALDI plate for on-plate simultaneous enrichment of phosphopeptides and glycopeptides. Talanta. 2017;175:427–34.

    Article  CAS  PubMed  Google Scholar 

  12. Guo HH, Chen G, Ma JT, Jia Q. A triazine based organic framework with micropores and mesopores for use in headspace solid phase microextraction of phthalate esters. Microchim Acta. 2019;186:DOI: 101007/s00604–018–3060–7.

  13. Zhang Y, Wang B, ** W, Wen Y, Nan L, Yang M, Liu R, Zhu Y, Wang C, Huang L, Song X, Wang Z. Sensitive and robust MALDI-TOF-MS glycomics analysis enabled by Girard’s reagent T on-target derivatization (GTOD) of reducing glycans. Anal Chim Acta. 2019;1048:105–14.

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Gao L, Uttamchandani M, Yao SQ. Comparative proteomic profiling of mammalian cell lysates using phosphopeptide microarrays. Chem Commun. 2012;48:2240–2.

    Article  CAS  Google Scholar 

  15. Nilsson CL. Advances in quantitative phosphoproteomics. Anal Chem. 2012;84:735–46.

    Article  CAS  PubMed  Google Scholar 

  16. Alcolea MP, Cutillas PR. In-depth analysis of protein phosphorylation by multidimensional ion exchange chromatography and mass spectrometry. Methods in Mol Biol. 2010;658:111–26.

    Article  CAS  Google Scholar 

  17. Yang S, Chang Y, Zhang H, Yu X, Shang W, Chen G, Chen DY, Gu Z. Enrichment of phosphorylated peptides with metal-organic framework nanosheets for serum profiling of diabetes and phosphoproteomics analysis. Anal Chem. 2018;90:13796–805.

    Article  CAS  PubMed  Google Scholar 

  18. Gao L, Tao J, Qi L, Jiang X, Shi H, Liu Y, Di B, Wang Y, Yan F. Synthesis of a metal oxide affinity chromatography magnetic mesoporous nanomaterial and development of a one-step selective phosphopeptide enrichment strategy for analysis of phosphorylated proteins. Anal Chim Acta. 2022;1195.

  19. Wang Y, Li P, Xu W, Zhang D, Jia Q. Hydrophilic magnetic host-guest Ti-phenolic networks: a promising material for the highly sensitive enrichment of glycopeptides and phosphopeptides. J Mater Chem B. 2023;11(22):4874–81.

    Article  CAS  PubMed  Google Scholar 

  20. Zhao Y, Xu W, Zheng H, Jia Q. Light, pH, and temperature triple-responsive magnetic composites for highly efficient phosphopeptide enrichment. Anal Chem. 2023;95(23):9043–51.

    Article  CAS  PubMed  Google Scholar 

  21. Wang Z, Wang J, Sun N, Deng C. A promising nanoprobe based on hydrophilic interaction liquid chromatography and immobilized metal affinity chromatography for capture of glycopeptides and phosphopeptides. Anal Chim Acta. 2019;1067:1–10.

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Xu Z, Wu Y, Wu H, Sun N, Deng C. Hydrophilic polydopamine-derived mesoporous channels for loading Ti (IV) ions for salivary phosphoproteome research. Anal Chim Acta. 2021;1146:53–60.

    Article  CAS  PubMed  Google Scholar 

  23. Li N, Zhang L, Shi HL, Li JR, Zhang J, Zhang ZQ, Dang FQ. Specific enrichment of phosphopeptides by using magnetic nanocomposites of type Fe3O4@graphene oxide and Fe3O4@C coated with self-assembled oligopeptides. Microchim Acta. 2020;187:144.

    Article  CAS  Google Scholar 

  24. Veleva VR, Cue BW, Todorova Jr. Benchmarking green chemistry adoption by the global pharmaceutical supply chain. ACS Sustainable Chem Eng. 2018;6:2−14.

  25. Wang H, Tian ZX. Facile synthesis of titanium (IV) ion immobilized adenosine triphosphate functionalized silica nanoparticles for highly specific enrichment and analysis of intact phosphoproteins. J Chromatogr A. 2018;1564:69–75.

    Article  CAS  PubMed  Google Scholar 

  26. Jiang DD, Li XQ, Ma JT, Jia Q. Development of Gd3+-immobilized glutathione-coated magnetic nanoparticles for highly selective enrichment of phosphopeptides. Talanta. 2018;180:368–75.

    Article  CAS  PubMed  Google Scholar 

  27. Luo B, Zhou XX, Jiang PP, Yi QY, Lan F. PAMA-Arg brush-functionalized magnetic composite nanospheres for highly effective enrichment of phosphorylated biomolecules. J Mater Chem B. 2018;6:3969–78.

    Article  CAS  PubMed  Google Scholar 

  28. Liu R, Zhao J, Han Q, Hu X, Wang D, Zhang X, Yang P. One-step assembly of a biomimetic biopolymer coating for particle surface engineering. Adv Mater. 2018;30:1802851.

    Article  Google Scholar 

  29. Wang K, Li N, Hai XM, Dang FQ. Lysozyme-mediated fabrication of well-defifined core-shell nanoparticle@metal-organic framework nanocomposites. J Mater Chem A. 2017;5:20765–70.

    Article  CAS  Google Scholar 

  30. Pan MR, Sun YF, Zheng J, Yang WL. Boronic acid-functionalized core-shell-shell magnetic composite microspheres for the selective enrichment of glycoprotein. ACS Appl Mater Interfaces. 2013;5:8351–8.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang QQ, Hang YY, Jiang BY, Hu YJ, **e JJ, Gao X, Jia B, Shen HL, Zhang WJ, Yang PY. In situ synthesis of magnetic mesoporous phenolic resin for the selective enrichment of glycopeptides. Anal Chem. 2018;90:7357–63.

    Article  CAS  PubMed  Google Scholar 

  32. Liu J, Sun ZK, Deng YH, Zou Y, Li CY, Guo XH, **ong LQ, Gao Y, Li FY, Zhao DY. Highly water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate groups. Angew Chem Int Ed. 2009;48:5875–9.

    Article  CAS  Google Scholar 

  33. Chen ZM, Geng ZR, Zhang ZY, Ren LB, Tao TX, Yang RC, Guo ZX. Synthesis of magnetic Fe3O4@C nanoparticles modified with -SO3H and -COOH groups for fast removal of Pb2+ Hg2+ and Cd2+ ions. Eur J Inorg Chem. 2014;3172−3177.

  34. Yan YH, Zheng ZF, Deng CH, Zhang XM, Yang PY. Facile synthesis of Ti4+-immobilized Fe3O4@polydopamine core-shell microspheres for highly selective enrichment of phosphopeptides. Chem Commun. 2013;49:5055–7.

    Article  CAS  Google Scholar 

  35. Qi DW, Mao Y, Lu J, Deng CH, Zhang XM. Phosphate-functionalized magnetic microspheres for immobilization of Zr4+ ions for selective enrichment of the phosphopeptides. J Chromatogr A. 2010;1217:2606–17.

    Article  CAS  PubMed  Google Scholar 

  36. Gu J, Su Y, Liu P, Li P, Yang P. An environmentally benign antimicrobial coating based on a protein supramolecular assembly. ACS Appl Mater Interfaces. 2016;9:198–210.

    Article  PubMed  Google Scholar 

  37. Gu J, Miao S, Yan Z, Yang P. Multiplex binding of amyloid-like protein nanofilm to different material surfaces. Colloid Interface Sci Commun. 2018;22:42–8.

    Article  CAS  Google Scholar 

  38. Wang HP, Jiao FL, Gao FY, Lv YY, Wu Q, Zhao Y, Shen YH, Zhang YJ, Qian XH. Titanium (IV) ion-modified covalent organic frameworks for specific enrichment of phosphopeptides. Talanta. 2017;166:133–40.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation Project of Shaanxi Province (No. 2020JZ-24), the National Key R&D Program of China (2019YFB2103000), and the Fundamental Research Funds for the Central Universities (GK201801006).

Funding

National Key R&D Program of China, 2019 YFB2103000, Fundamental Research Funds for the Central Universities, GK201801006, Natural Science Foundation Project of Shaanxi Province, No. 2020JZ-24

Author information

Authors and Affiliations

Authors

Contributions

Jianru Li & Nan Li: Conceptualization, Methodology, Investigation, Validation, Writing—original draft, Writing—review & editing. Yawen Hou: Investigation, Validation. Miao Fan & Yuxiu Zhang & Qiqi Zhang: Resources. Fuquan Dang: Supervision, Funding acquisition.

Corresponding authors

Correspondence to Nan Li or Fuquan Dang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethics statement

Human serum was obtained from Shaanxi Normal University Hospital. All the experiments were permitted by Human Research Ethics Board of Shaanxi Normal University (NO. 20150323). All participants provided written informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16.4 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Li, N., Hou, Y. et al. Facile fabrication of Ti4+-immobilized magnetic nanoparticles by phase-transitioned lysozyme nanofilms for enrichment of phosphopeptides. Anal Bioanal Chem 416, 1657–1665 (2024). https://doi.org/10.1007/s00216-024-05170-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-024-05170-7

Keywords

Navigation