Log in

Quasi-Maximum Modulus Principle for the Stokes Equations

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

In this paper, we extend the maximum modulus estimate of the solutions of the nonstationary Stokes equations in the bounded C 2 cylinders for the space variables in Chang and Choe (J Differ Equ 254(7):2682–2704, 2013) to time estimate. We show that if the boundary data is \({L^{\infty}}\) and the normal part of the boundary data has log-Dini continuity with respect to the time, then the velocity is bounded. We emphasize that there is no continuity assumption on space variables in the new maximum modulus estimate. This completes the maximum modulus estimate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abe K., Giga Y.: Analyticity of the Stokes semigroup in spaces if bounded functions. Acta. Math. 211(1), 1–46 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abe K., Giga Y.: The \({L^\infty}\)-Stokes semigroup in exterior domains. J. Evol. Equ. 14(1), 1–28 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chang, T. Choe H.: Maximum modulus estimates for the solution of the Stokes equations. J. Differ. Equ. 254(7), 2682–2704 (2013)

  4. Choe H., Kozono H.: The Stokes problem for Lipschitz domains. Indiana Univ. Math. J. 51(5), 12351260 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Desch W., Hieber M., Prss J.: L p-theory of the Stokes equation in a half space. J. Evol. Equ. 1, 115–142 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hieber, M., Maremonti, P.: Bounded analyticity of the stokes semigroup on spaces of bounded functions. In: Amann, H. et al. (eds.) Recent Developments of Mathematical Fluid Mechanics, Advances in Mathematical Fluid Mechanics, pp. 275–289. Springer, (2016)

  7. Kang K.: On boundary regularity of the Navier–Stokes equations. Commun. Partial. Differ. Equ. 29(7-8), 955–987 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kratz W.: The maximum modulus theorem for the Stokes system in a ball’. Math. Z. 226(3), 389–403 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Maremonti P.: On the Stokes equations: the maximum modulus theorem. Math. Models Methods Appl. Sci. 10(7), 1047–1072 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Maremonti P.: On the Stokes problem in exterior domains: the maximum modulus theorems. Discrete Contin. Dyn. Syst. 34(5), 2135–2171 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Maremonti P., Russo R.: On the maximum modulus theorem for the Stokes system. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 21(4), 629643 (1994)

    MathSciNet  MATH  Google Scholar 

  12. Mazya V., Rossmann J.: A maximum modulus estimate for solutions of the Navier–Stokes system in domains of polyhedral type. Math. Nachr. 282(3), 459–469 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Shen Z.: Boundary value problems for parabolic Lame systems and a nonstationary linearized system of Navier–Stokes equations in Lipschitz cylinders. Am. J. Math. 113(2), 293–373 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Shen Z.: A note on the Dirichlet problem for the Stokes system in Lipschitz domains. Proc. Am. Math. Soc. 123(3), 801–811 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Solonnikov, V.A.: Estimates of the solutions of the nonstationary Navier–Stokes system. (Russian) Boundary value problems of mathematical physics and related questions in the theory of functions, 7. Zap. Naucn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LoMI) 38, 153–231. Translated in J. Soviet Math. 8, 47–529 (1977)

  16. Solonnikov, V.A.: On the theory of nonstationary hydrodynamic potentials. In: The Navier–Stokes equations: theory and numerical methods (Varenna, 2000), Lecture Notes in Pure and Appl. Math., vol. 223, pp. 113–129. Dekker, New York (2002)

  17. Birman, M.S., Hildebrandt, S., Solonnikov, V.A., Uraltseva N.N. (eds.): Nonlinear Problems in Mathematical Physics and Related Topics. I. In Honor of Professor O. A. Ladyzhenskaya. International Mathematical Series (New York), vol. 1. Kluwer Academic/Plenum Publishers, New York (2002)

  18. Solonnikov V.A.: On the estimates of the solution of the evolution Stokes problem in weighted Hölder norms. Annali dell’Univ. di Ferrara (Sez. VII, Sci. Mat.) 52, 137–172 (2006)

    Article  Google Scholar 

  19. Vasilev, V.N., Solonnikov, V.A.: Bounds for the maximum modulus of the solution of a linear nonstationary system of Navier–Stokes equations, (Russian. English summary). Boundary value problems of mathematical physics and related questions in the theory of functions, 10. Zap. Naun. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 69, 3444, 273 (1977)

  20. Varnhorn W.: Boundary integral equations and maximum modulus estimates for the Stokes system. Proc. Appl. Math. Mech. 7, 1042603–1042604 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tongkeun Chang.

Additional information

Communicated by G.P. Galdi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, T., Choe, H.J. Quasi-Maximum Modulus Principle for the Stokes Equations. J. Math. Fluid Mech. 19, 135–149 (2017). https://doi.org/10.1007/s00021-016-0272-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-016-0272-7

Mathematics Subject Classification

Keywords

Navigation