Log in

Impact of piezoelectric polarization on the performance of InGaN/GaN pin solar cells with Ga- and N-face polarity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

To fully understand the role of spontaneous and piezoelectric polarization on carrier dynamics in InGaN/GaN solar cells, a p-GaN/i-InxGa1−xN/n-GaN double-heterostructure is being studied with the aim of improving its internal and external properties. Numerical simulations with reliable model parameters have been used to compare structures with N-face and Ga-face polarity. In order to include the effects of inelastic strain relaxation, when the compressively strained InGaN layers approach their critical thickness, we simulated the pin InGaN structures by varying the piezoelectric field while kee** the spontaneous polarization unchanged. As strain relaxation leads to formation of non-radiative recombination centers, and critical thickness strongly depends on indium content, we also studied the dependency of device performance on indium fraction and non-radiative center density, allowing to identify the optimal device structure. The results clearly show that the sample with the N-face polarity in presence of piezoelectric fields reaches a good conversion efficiency and is less sensitive to strain relaxation compared to the metal polarity case. This type of research can lead to an optimization of the InGaN solar cell for further experimental implementation, holding great promise for thoroughly boosting the use of solar energy in the framework of the current energy revolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data in this manuscript are available upon request. This manuscript has associated data in a data repository. [Authors’ comment: All data included in this work can be available upon request by contacting the corresponding author.]

References

  1. N.G.T. Carl, J. Neufeld, S.C. Cruz, M. Iza, P.D. Steven, Baars High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap. Appl. Phys. Lett 93, 143502 (2008). https://doi.org/10.1063/1.2988894

    Article  Google Scholar 

  2. F.K. Yam, Z. Hassan, InGaN: an overview of the growth kinetics, physical properties and emission mechanisms. Superlattices Microstruct 43, 1–23 (2008). https://doi.org/10.1016/j.spmi.2007.05.001

    Article  Google Scholar 

  3. A. Wang, S.M. Horcajo, M.J. Tadjer, F. Calle, Simulation of temperature and electric field-dependent barrier traps effects in AlGaN/GaN HEMTs. Semicond Sci Technol (2015). https://doi.org/10.1088/0268-1242/30/1/015010

    Article  Google Scholar 

  4. Q. Deng, X. Wang, H. **ao, C. Wang, H. Yin, H. Chen, Q. Hou, D. Lin, J. Li, Z. Wang, X. Hou, An investigation on InxGa1xN/GaN multiple quantum well solar cells. J. Phys. D: Appl. Phys. 44, 265103 (2011). https://doi.org/10.1088/0022-3727/44/26/265103

    Article  Google Scholar 

  5. Z.Q. Li, M. Lestradet, Y.G. **ao, S. Li, Effects of polarization charge on the photovoltaic properties of InGaN solar cells. Phys. Status Solidi A 208, 929–931 (2011). https://doi.org/10.1002/pssa.201026489

    Article  Google Scholar 

  6. W. El-Huni, A. Migan, Z. Djebbour, J.P. Salvestrini, A. Ougazzaden, High-efficiency indium gallium nitride/Si tandem photovoltaic solar cells modeling using indium galliumnitride semibulk material: monolithic integration versus4-terminal tandem cells. Prog. Photovolt: Res. Appl. (2016). https://doi.org/10.1002/pip.2807

    Article  Google Scholar 

  7. K. Yosuke, F. Takahiro, F. Yasuharu, S. Tohru, I. Motoaki, T. Tetsuya, K. Satoshi, A. Isamu, A. Hiroshi, Realization of nitride-based solar cell on freestanding GaN substrate. Appl. Phys. Expr. 3, 111001 (2010). https://doi.org/10.1143/APEX.3.111001/pdf

    Article  Google Scholar 

  8. N. Watanabe, H. Yokoyama, N. Shigekawa, K. Sugita, A. Yamamoto, Barrier thickness dependence of photovoltaic charateristics of InGaN/GaN multiple quantum well solar cells. Japn. J. Appl. Phys 51, 10ND10 (2012). https://doi.org/10.1143/JJAP.51.10ND10

    Article  Google Scholar 

  9. S. Lee, Y. Honda, H. Amano, Effect of piezoelectric field on carrier dynamics in InGaN-based solar cells. J. Phys. D (2015). https://doi.org/10.1088/0022-3727/49/2/025103

    Article  Google Scholar 

  10. W. El-Huni, A. Migan, D. Alamarguy, Z. Djebbour, Djebbour modeling of InGaN/Si tandem cells: comparison between 2-contacts/4-contacts EPJ. Photovolt 8, 85502 (2017). https://doi.org/10.1051/epjpv/2017003

    Article  Google Scholar 

  11. M. Iwaya, T. Yamamoto, D. Iida, Y. Kondo, M. Sowa, H. Matsubara, K. Ishihara, T. Takeuchi, S. Kamiyama, I. Akasaki, Relationship between misfit-dislocation formation and initial threading-dislocation density in GaInN/GaN heterostructures. Japn. J. Appl. Phys. 54, 115501 (2015). https://doi.org/10.7567/JJAP.54.115501

    Article  Google Scholar 

  12. Y.K. Kuo, J.Y. Chang, Y.H. Shih, Numerical study of the effects of hetero-interfaces, polarization charges, and step-graded interlayers on the photovoltaic properties of (0001) face GaN/InGaN pin solar cell. IEEE J. Quantum Electron. 48, 367–374 (2012). https://doi.org/10.1109/JQE.2011.2181972

    Article  Google Scholar 

  13. J.J. Wierer, D.D. Koleske, S.R. Lee, Influence of barrier thickness on the performance of InGaN/GaN multiple quantum well solar cells. Appl. Phys. Lett. 100, 111–119 (2012). https://doi.org/10.1063/1.3695170

    Article  Google Scholar 

  14. K. Wang, Q. Wang, J. Chu, H. **ao, X. Wang, A.Z. Wang, Roles of polarization effects in InGaN/GaN solar cells and comparison of pi–n and nip structures. Opt. Expr. 26(22), 946 (2018). https://doi.org/10.1364/OE.26.00A946

    Article  Google Scholar 

  15. J.Y. Chang, Y.K. Kuo, Numerical study on the influence of piezoelectric polarization on the performance of p-on-n (0001)-face GaN/InGaN pin solar cells. IEEE Electron. Dev. Lette. 32, 937–939 (2011). https://doi.org/10.1109/LED.2011.2150195

    Article  Google Scholar 

  16. J.Y. Chang, Y.K. Kuo, J. Appl. Phys. 112, 033109 (2012). https://doi.org/10.1063/1.4745043

    Article  Google Scholar 

  17. C. Jiang, L. **g, X. Huang, M. Liu, C. Du, T. Liu, X. Pu, W. Hu, Z.L. Wang, Piezotronic effect tuned AlGaN/GaN high electron mobility transistor. Nanotechnology 28, 455203–455208 (2017). https://doi.org/10.1088/1361-6528/aa8a5a

    Article  Google Scholar 

  18. A. Kazazis, E. Papadomanolaki, E. Iliopoulos, IEEE J. Photovolt. 8, 118 (2018). https://doi.org/10.1109/JPHOTOV.2017.2775164

    Article  Google Scholar 

  19. C.A. Parker, J.C. Roberts, S.M. Bedair, M.J. Reed, S.X. Liu et al., Determination of the critical layer thickness in the InGaN/GaN heterostructures. Appl. Phys. Lett. 75, 2776 (1999). https://doi.org/10.1063/1.125146

    Article  Google Scholar 

  20. B. Chouchen, F. Ducroquet, S. Nasr, A.Y. Alzahrani, A.T. Hajjiah, M.H. Gazzah, (2021) InxGa1xN/GaN double heterojunction solar cell optimization for high temperature operation. Solar Energy Mater. Solar Cells 234, 111446 (2021). https://doi.org/10.1016/j.solmat.2021.111446

    Article  Google Scholar 

  21. Silvaco-ATLAS User ’ s Manual, 2013

  22. O. Ambacher, A.B. Foutz, J. Smart, J.R. Shealy, N.G. Weimann, K. Chu, M. Murphy, A.J. Sierakowski, W.J. Schaff, L.F. Eastman, R. Dimitrov, A. Mitchell, M. Stutzmann, Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures. J. Appl. Phys. 87, 334–344 (2000). https://doi.org/10.1063/1.371866

    Article  Google Scholar 

  23. W. Zhao, L. Wang, J. Wang, Z. Hao, Y. Luo, Theoretical study on critical thicknesses of InGaN grown on (0001) GaN. J. Cryst. Growth 327, 202–204 (2011). https://doi.org/10.1016/j.jcrysgro.2011.05.002

    Article  Google Scholar 

  24. K. Pantzas, Y. ElGmili, J. Dickerson, S. Gautier, L. Largeau, O. Mauguin, G. Patriarche, S. Suresh, T. Moudakir, C. Bishop, A. Ahaitouf, T. Rivera, C. Tanguy, P. Voss, A. Ougazzaden, Semibulk InGaN: a novel approach for thick, single phase, epitaxial InGaN layers grown by MOVPE. J. Cryst. Growth 370, 57–62 (2013). https://doi.org/10.1016/j.jcrysgro.2012.08.041

    Article  Google Scholar 

  25. B. Chouchen, M.H. Gazzah, A. Bajahzar, H. Belmabrouk, Numerical modeling of InGaN/GaN pin solar cells under temperature and hydrostatic pressure effects. AIP Adv. 9, 045313 (2019). https://doi.org/10.1063/1.5092236

    Article  Google Scholar 

  26. G. Namkoong, P. Boland, S.Y. Bae, J.-P. Shim, D.S. Lee, S.R. Jeon, K. Foe, K. Latimer, W.A. Doolittle, Effect of III-nitride polarization on VOC in pin and MQW solar cells. Phys. Status Solidi RRL (2011). https://doi.org/10.1002/pssr.201004512

    Article  Google Scholar 

  27. J.Y. Chang, B.T. Liou, H.-W. Lin, Y.-H. Shih, S.H. Chang, Y.-K. Kuo, Numerical investigation on the enhanced carrier collection efficiency of Ga-face GaN/InGaN pin solar cells with polarization compensation interlayers. Opt. Lett. (2011). https://doi.org/10.1364/OL.36.003500

    Article  Google Scholar 

  28. S.A. Kazazis, E. Papadomanolaki, E. Iliopoulos, Polarization-engineered InGaN/GaN solar cells: realistic expectations for single heterojunctions. IEEE J. Photovolt. 8, 118–124 (2018). https://doi.org/10.1109/JPHOTOV.2017.2775164

    Article  Google Scholar 

  29. M. Arif, W. Elhuni, J. Streque, S. Sundaram, S. Belahsene, Y. El Gmili, M. Jordan, X. Li, G. Patriarche, A. Slaoui, A. Miganc, R. Abderrahimd, Z. Djebbour, P.L. Voss, J.P. Salvestrini, A. Ougazzaden, Improving InGaN heterojunction solar cells efficiency using a semibulk absorber. Sol. Energy Mater. Sol. Cells 159, 405–411 (2017). https://doi.org/10.1016/j.solmat.2016.09.030

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali T. Hajjiah.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chouchen, B., Hajjiah, A.T., der Maur, M.A. et al. Impact of piezoelectric polarization on the performance of InGaN/GaN pin solar cells with Ga- and N-face polarity. Eur. Phys. J. Plus 137, 1296 (2022). https://doi.org/10.1140/epjp/s13360-022-03528-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03528-3

Navigation