Log in

Role of n-ZnO Layer on the Improvement of Interfacial Properties in ZnO/InGaN p-i-n Solar Cells

  • Research Article
  • Published:
Transactions of Tian** University Aims and scope Submit manuscript

Abstract

InGaN has been predicted to be an efficient photovoltaic material. However, the high-density polarization charges and large potential barrier at the i-InGaN/n-GaN interface create an electric field that severely decreases the collection efficiency of p-InGaN/i-InGaN/n-GaN heterostructure solar cells. We demonstrate that, according to numerical simulations, utilizing a p-InGaN/i-InGaN/n-ZnO heterostructure can greatly reduce the piezoelectric field in the absorption layer and reduce the potential barrier between the n-type layer and the absorption layer interface, thus improving the performances of the solar cell. Moreover, we studied the influence of the band alignment on the ZnO/InGaN interface on the performance of the solar cell. We found that the band alignment of the ZnO/InGaN interface can keep the solar cells at a very high efficiency over a wide scope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wu JQ (2009) When group-III nitrides go infrared: new properties and perspectives. J Appl Phys 106(1):011101

    Article  Google Scholar 

  2. Jani O, Ferguson I, Honsberg C et al (2007) Design and characterization of GaN/InGaN solar cells. Appl Phys Lett 91(13):132117

    Article  Google Scholar 

  3. Wu J, Walukiewich W, Yu KM et al (2003) Superior radiation resistance of In1−x Ga x N alloys: a full-solar-spectrum photovoltaic materials system. J Appl Phys 94(10):6477–6482

    Article  Google Scholar 

  4. Nanishi Y, Satio Y, Yamaguchi T (2003) RF-molecular beam epitaxy growth and properties of InN and related alloys. J Appl Phys 42(5A):2549–2559

    Article  Google Scholar 

  5. Vazquez M, Algora C, Rey-Stolle I et al (2007) III-V concentrator solar cell reliability prediction based on quantitative LED reliability data. Prog Photovolt 15(6):477–491

    Article  Google Scholar 

  6. Neufeld CJ, Toledo NG, Cruz SC et al (2008) High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap. Appl Phys Lett 93(14):143502

    Article  Google Scholar 

  7. **e S, Feng ZH, Liu B et al (2013) DC characteristics of lattice-matched InAlN/AlN/GaN high electron mobility transistors. Trans Tian** Univ 19(1):43–46

    Article  Google Scholar 

  8. Bhuiyan AG, Sugita K, Hashimoto A et al (2012) InGaN solar cells: present state of the art and important challenges. IEEE J Photovolt 2(3):276–293

    Article  Google Scholar 

  9. Abell J, Moustakas TD (2008) The role of dislocations as nonradiative recombination centers in InGaN quantum wells. Appl Phys Lett 92(9):091901

    Article  Google Scholar 

  10. Yu ET, Dang XZ, Asbeck PM et al (1999) Spontaneous and piezoelectric polarization effects in III-V nitride heterostructures. J Vac Sci Technol B 17(4):1742–1749

    Article  Google Scholar 

  11. Chang JY, Kuo YK (2011) Numerical study on the influence of piezoelectric polarization on the performance of p-on-n (0001)-face GaN/InGaN p-i-n solar cells. IEEE Electron Dev Lett 32(7):937–939

    Article  Google Scholar 

  12. Kuo YK, Chang JY, Shih YH (2012) Numerical study of the effects of hetero-interfaces, polarization charges, and step-graded interlayers on the photovoltaic properties of (0001) face GaN/InGaN p-i-n solar cell. IEEE J Quantum Electron 48(3):367–374

    Article  Google Scholar 

  13. **a Y, Brault J, Vennéguès P et al (2014) Growth of Ga- and N-polar GaN layers on O face ZnO substrates by molecular beam epitaxy. J Cryst Growth 388:35–41

    Article  Google Scholar 

  14. Nam SY, Choi YS, Song YH et al (2013) n-ZnO/i-InGaN/p-GaN heterostructure for solar cell application. Phys Status Solidi A 210(10):2214–2218

    Article  Google Scholar 

  15. Namkoong G, Diefeng G, Foe K et al (2011) Hybrid nitride-ZnO solar cells. ECS Trans 41(4):185–189

    Article  Google Scholar 

  16. Inoue S, Katoh M, Kobayashi A et al (2010) Investigation on the conversion efficiency of InGaN solar cells fabricated on GaN and ZnO substrates. Phys Status Solidi RRL 4(3/4):88–90

    Article  Google Scholar 

  17. Pantha BN, Sedhain A, Li J et al (2009) Electrical and optical properties of p-type InGaN. Appl Phys Lett 95(26):261904

    Article  Google Scholar 

  18. Nawaz M, Marstein ES, Hole A (2010) Design analysis of ZnO/cSi heterojunction solar cell. IEEE Photovolt Spec Conf 35:2213–2218

    Google Scholar 

  19. IP KPS (2005) Process development for ZnO-based devices. University of Florida, Gainesville

    Google Scholar 

  20. Lide DR (2004) CRC handbook of chemistry and physics. Chemical Rubber Publishing Company, Boca Raton

    Google Scholar 

  21. Brown GF, Ager JW, Walukiewicz W et al (2010) Finite element simulations of compositionally graded InGaN solar cells. Sol Energy Mater Sol Cells 94(3):478–483

    Article  Google Scholar 

  22. VurgaftmanI Meyer JR, Ram-Mohan LR (2001) Band parameters for III-V compound semiconductors and their alloys. J Appl Phys 89(11):5815–5875

    Article  Google Scholar 

  23. Look DC (2001) Recent advances in ZnO materials and devices. Mater Sci Eng B 80(1/3):383–387

    Article  Google Scholar 

  24. Wagner P, Helbig R (1974) Hall effect and anisotropy and maneuverability of electron in ZnO. J Phys Chem Solids 35(3):327–335 (in German)

    Article  Google Scholar 

  25. Wu J, Walukiewicz W, Yu KM et al (2002) Unusual properties of the fundamental band gap of InN. Appl Phys Lett 80(21):3967–3969

    Article  Google Scholar 

  26. Li N (2005) Simulation and analysis of GaN-based photoelectronic devices. Chinese Academy of Sciences, Bei**g (in Chinese)

    Google Scholar 

  27. Bandic ZZ, Bridger PM, Piquette EC et al (1998) Minority carrier diffusion length and lifetime in GaN. Appl Phys Lett 72(24):3166–3168

    Article  Google Scholar 

  28. Chen F, Cartwright AN, Lu H et al (2005) Temperature dependence of carrier lifetimes in InN. Phys Status Solidi A 202(5):768–772

    Article  Google Scholar 

  29. Fabien CAM, Doolittle WA (2014) Guidelines and limitations for the design of high-efficiency InGaN single-junction solar cells. Sol Energy Mater Sol Cells 130:354–363

    Article  Google Scholar 

  30. Fiorentini V, Bernardini F, Ambacher O (2002) Evidence for nonlinear macroscopic polarization in III–V nitride alloy heterostructures. Appl Phys Lett 80(7):1204–1206

    Article  Google Scholar 

  31. Della Sala F, Di Carlo A, Lugli P et al (1999) Carrier screening and polarization fields in nitride-based heterostructure devices. Phys B 272(1/4):397–401

    Article  Google Scholar 

  32. Silvaco Inc. (2013) ATLAS user’s manual. http://www.silvaco.com. Accessed 02 Oct 2013

  33. Henry CH (1980) Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells. J Appl Phys 51(8):4494–4500

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Nos. 61564007 and 11364034) and Jiangxi Provincial Sci-Tech Support Plan (No. 20141BBE50035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Wang, L. & Quan, Z. Role of n-ZnO Layer on the Improvement of Interfacial Properties in ZnO/InGaN p-i-n Solar Cells. Trans. Tian** Univ. 23, 420–426 (2017). https://doi.org/10.1007/s12209-017-0058-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-017-0058-x

Keywords

Navigation