Log in

Effect of temperature on electronic and electrical behavior of InGaN double hetero-junction p-i-n solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Optoelectronic systems based on elements of the nitride family, mainly, those based on GaN/InGaN alloys offer huge potentialities in solar cell applications, as example in concentrated photovoltaic (CPV) for the realization of solar photovoltaic cells (SPC), mainly thanks to the large tunability of the band-gap related to the ternary In-Ga-N concentrations in the layers. This paper investigates temperature effects on the electronic and electrical parameters, and thus efficiency of GaN/InGaN SPCs with respect to the N-face configuration. In an attempt to determine the energy bands all along with the cell’s photovoltaic parameters, a numerical model is proposed. The model considers the indium composition and the host lattice temperature. Moreover, the developed model highlights the polarization effects on the performances of nitride SPCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K.H. Lee, P.C. Chang, S.J. Chang, Microelectron. Eng. 104, 105–109 (2013)

    Article  Google Scholar 

  2. J.J. Wierer, A.J. Fischer, D.D. koleske, Appl. Phys. Lett. 96, 051107 (2010)

    Article  Google Scholar 

  3. E. Matioli, C. Neufeld, M. Iza, S.C. Cruz, A.A. Al-Heji, X. Chen, R.M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, C. Weisbuch, Appl. Phys. Lett. 98, 021102 (2011)

    Article  Google Scholar 

  4. R. Belghouthi, S. Taamalli, F. Echouchene, H. Mejri, H. Belmabrouk, Mater. Sci. Semicond. Process. 40, 424–428 (2015)

    Article  Google Scholar 

  5. R. Belghouthi, J.P. Salvestrini, M.H. Gazzeh, C. Chevalier, Superlattices Microstruct. 100, 168–178 (2016)

    Article  Google Scholar 

  6. J.Y. Chang, S.H. Yen, Y.A. Chang, Y.K. Kuo, IEEE J. Quantum Electron. 49, 17–23 (2013)

    Article  Google Scholar 

  7. J.Y. Chang, Y.K. Kuo, J. Appl. Phys. 112, 033109 (2012)

    Article  Google Scholar 

  8. V. Gorge, A.M. Dubois, Z. Djebbour, K. Pantzas, S. Gautier, T. Moudakir, S. Suresh, A. Ougazzaden, Mater. Sci. and Eng. B 178, 142–148 (2013)

    Article  Google Scholar 

  9. X.M. Cai, S.W. Zeng, B.P. Zhang, Appl. Phys. Lett. 95, 173504 (2009)

    Article  Google Scholar 

  10. X.M. Cai, S.W. Zeng, B.P. Zhang, Electron. Lett. 24, 1266–1267 (2009)

    Article  Google Scholar 

  11. A.T.M. Golam Sarwar, R.C. Myers, Appl. Phys. Lett. 101, 143905–143910 (2012)

    Article  Google Scholar 

  12. A. Asgari, Kh Khalili, Solar Energy Mater. Solar Cells. 95, 3124–3129 (2011)

    Article  Google Scholar 

  13. A. Mesrane, A. Mahrane, F. Rahmoune, A. Oulebsir, J. Electron. Mater. 4, 2451–2459 (2017)

    Article  Google Scholar 

  14. J. Ding, X. Wang, H.**ao,C. Wang, H. Yin, H. Chen, C. Feng, L. Jiang, J. Alloys Compd. 523, 88–93 (2012)

    Article  Google Scholar 

  15. O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, L.F. Eastman, J. Phys. 14, 3399–3434 (2002)

    Google Scholar 

  16. F. Bernardini, V. Fiorentini, Phys. Rev. B .64, 085207 (2001)

    Article  Google Scholar 

  17. Y. Zhang, Y. Liu, Z.L. Wang, Adv. Mater. 23, 3004–3013 (2011)

    Article  Google Scholar 

  18. Y. Zhang, Y. Yang, Z.L. Wang, Energy Environ. Sci. 5, 6850–6856 (2012)

    Article  Google Scholar 

  19. F. Sacconi, A.D. Carlo, P. Lugli, H. Morkoç, IEEE Trans. Electron Devices 48, 450–457 (2001)

    Article  Google Scholar 

  20. A. Rached, A. Bhouri, S.Sakr,J.-L. Lazzari, H. Belmabrouk, Superlattices Microstruct. 91, 37–50 (2016)

    Article  Google Scholar 

  21. Y.C. Chang, K.Y. Tong, C. Surya, Semicond. sci. Technol. 20, 188–192 (2005)

    Article  Google Scholar 

  22. Y.P. Varshni, Physica 34, 149–154 (1967)

    Article  Google Scholar 

  23. H. Teisseyre, P. Perlin, T. Suski, I. Grzegory, S. Porowski, J. Jun, J.Appl. Phys. 76, 2429–2434 (1994)

    Article  Google Scholar 

  24. Y.S. Nam, J.S. Yoon, H.L. Juand, S.K. Chang, J. Korean Phys. Soc. 65, 1068–1072 (2014)

    Article  Google Scholar 

  25. H. Zhang, E.J. Miller, E.T. Yu, Appl. Phys. Lett. 84, 4644–4646 (2004)

    Article  Google Scholar 

  26. M.E. Levinshtein, S.L. Rumyantsev, M. Shur, Wiley. 25, Chap. 1 (2001)

    Google Scholar 

  27. I. Vurgaftman, J.R. Meyer, J. Appl. Phys. 94, 3675 (2003)

    Article  Google Scholar 

  28. M.O. Manasreh, Phys. Rev. B. 53, 16425 (1996)

    Article  Google Scholar 

  29. I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001)

    Article  Google Scholar 

  30. G.F. Brown, J.W. Ager III, W. Walukiewicz, J. Wu, Solar Energy Mater. Solar Cells 94, 478–483 (2010)

    Article  Google Scholar 

  31. Y. Liu, D. Chen, K. Dong, H. Lu, R. Zhang, Y. Zheng, Z. Zhu, G. Wei, Z. Lin, Adv. Condens. Matter Phys. 4, 1–4 (2018)

    Google Scholar 

  32. N. Dharmarasu, K. Radhakrishnan, M. Agrawal, L. Ravikiran, S. Arulkumaran, K.E. Leel, N.G. Ing, Appl. Phys. Express 5, 9 (2012)

    Article  Google Scholar 

  33. Y. El Gmili, G. Orsal, K. Pantzas, T. Moudakir, S. Sundaram, G. Patriache, J. Hester, A. Ahaitouf, J.P. Salvestrini, A. Ougazzaden, Acta Mater. 61, 6587–6596 (2013)

    Article  Google Scholar 

  34. P.H. Biwole, P. Eclache, F. Kuznik, Energy Buildings 62, 59–67 (2013)

    Article  Google Scholar 

  35. M. Hasanuzzaman, A.B.M.A. Malek, M.M. Islam, A.K. Pandey, N.A. Rahim, Solar Energy. 137, 25–45 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabeb Belghouthi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belghouthi, R., Aillerie, M., Rached, A. et al. Effect of temperature on electronic and electrical behavior of InGaN double hetero-junction p-i-n solar cells. J Mater Sci: Mater Electron 30, 4231–4237 (2019). https://doi.org/10.1007/s10854-019-00714-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-00714-5

Navigation