Log in

Peridotites, chromitites and diamonds in ophiolites

  • Review Article
  • Published:

From Nature Reviews Earth & Environment

View current issue Sign up to alerts

Abstract

Ophiolites, which represent segments of oceanic lithosphere obducted onto the continental crust, provide an important window into processes such as continental rifting, mantle melting, asthenospheric upwelling and cooling of oceanic lithosphere. Traditionally, research has focused on crustal sections of ophiolites. However, there is a growing recognition that mantle sections contain important information on ophiolite formation and crustal recycling. In this Review, we outline the importance of chromium spinel and associated mineral inclusions for recording the tectonic setting and past histories of ophiolitic mantle sections, with a focus on the insights they provide into deep crustal recycling. In particular, the presence of ultra-high-pressure mineral inclusions, such as microdiamonds, metal alloys, Mn silicates and coesites, in podiform chromitites and other ophiolitic mantle rocks offer evidence of deep and reduced formation conditions. The composition of ultra-high-pressure minerals, and especially the light carbon isotope composition of ophiolite-hosted diamonds, indicates a contribution of recycled crustal material to the mantle portions of ophiolites. The details of crustal material transport through the mantle remain a subject of debate and ongoing research. A global investigation of high-pressure minerals in ophiolitic peridotites and chromitites should be a target of future research to help clarify understanding of deep crustal recycling.

Key points

  • Mantle rocks and minerals in ophiolite sequences can provide insights into the tectonic setting of ophiolite formation and preserve details of a far more complex geological history than previously thought from crustal sections alone.

  • The increasing reports of diamonds found in various ophiolites worldwide imply their common occurrence in ophiolitic peridotites and chromitites.

  • Exotic ultra-high-pressure minerals, such as diamond, moissanite and coesite, and crustal components, such as zircon inclusions, in ophiolitic peridotite and chromitite indicate the incorporation of deep-recycled crustal material.

  • Ophiolitic peridotites and chromitites are an exciting window for probing deep crustal recycling and deep mantle dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: A typical ophiolite sequence.
Fig. 2: Global distribution of ophiolite belts and diamond-bearing ophiolites.
Fig. 3: Tectonic discrimination diagrams for peridotites.
Fig. 4: In situ diamonds and their mineral inclusions found in ophiolites.
Fig. 5: Carbon and nitrogen isotope compositions of ophiolite-hosted diamonds.
Fig. 6: The formation of diamond and chromitite in Earth’s mantle.

Similar content being viewed by others

References

  1. Boudier, F. & Nicolas, A. Harzburgite and lherzolite subtypes in ophiolitic and oceanic environments. Earth Planet. Sci. Lett. 76, 84–92 (1985).

    Article  Google Scholar 

  2. Dilek, Y. & Furnes, H. Ophiolite genesis and global tectonics: geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geol. Soc. Am. Bull. 123, 387–411 (2011).

    Article  Google Scholar 

  3. Coleman, R. G. Ophiolites: Ancient Oceanic Lithosphere? (Springer-Verlag Berlin Heidelberg, 1977).

  4. Nicolas, A. Structures of Ophiolites and Dynamics of Oceanic Lithosphere (Springer, 1989).

  5. Miyashiro, A. The Troodos ophiolitic complex was probably formed in an island arc. Earth Planet. Sci. Lett. 19, 218–224 (1973).

    Article  Google Scholar 

  6. Pearce, J. A. & Cann, J. R. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth Planet. Sci. Lett. 19, 290–300 (1973).

    Article  Google Scholar 

  7. Pearce, J. A. Basalt geochemistry used to investigate past tectonic environments on Cyprus. Tectonophysics 25, 41–67 (1975).

    Article  Google Scholar 

  8. Pearce, J. A. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100, 14–48 (2008).

    Article  Google Scholar 

  9. Pearce, J. A. Immobile element fingerprinting of ophiolites. Elements 10, 101–108 (2014).

    Article  Google Scholar 

  10. Stern, R. J. Subduction initiation: spontaneous and induced. Earth Planet. Sci. Lett. 226, 275–292 (2004).

    Article  Google Scholar 

  11. Stern, R. J. & Gerya, T. Subduction initiation in nature and models: a review. Tectonophysics 746, 173–198 (2018).

    Article  Google Scholar 

  12. Reagan, M. K. et al. Forearc ages reveal extensive short-lived and rapid seafloor spreading following subduction initiation. Earth Planet. Sci. Lett. 506, 520–529 (2019).

    Article  Google Scholar 

  13. Pearce, J. A., Lippard, S. J. & Roberts, S. Characteristics and tectonic significance of supra-subduction zone ophiolites. Geol. Soc. Lond. Spec. Publ. 16, 77–94 (1984). Classification of ophiolites into suprasubduction zone and mid-ocean-ridge types, based on geochemical compositions of crustal rocks in ophiolites and connected with the tectonic setting.

    Article  Google Scholar 

  14. Dilek, Y. & Furnes, H. Ophiolites and their origins. Elements 10, 93–100 (2014).

    Article  Google Scholar 

  15. Warren, J. M. Global variations in abyssal peridotite compositions. Lithos 248–251, 193–219 (2016).

    Article  Google Scholar 

  16. Snow, J. E., Schmidt, G. & Rampone, E. Os isotopes and highly siderophile elements (HSE) in the Ligurian ophiolites, Italy. Earth Planet. Sci. Lett. 175, 119–132 (2000).

    Article  Google Scholar 

  17. Alard, O. et al. In situ Os isotopes in abyssal peridotites bridge the isotopic gap between MORBs and their source mantle. Nature 436, 1005–1008 (2005).

    Article  Google Scholar 

  18. Ahmed, A. H., Hanghøj, K., Kelemen, P. B., Hart, S. R. & Arai, S. Osmium isotope systematics of the Proterozoic and Phanerozoic ophiolitic chromitites: in situ ion probe analysis of primary Os-rich PGM. Earth Planet. Sci. Lett. 245, 777–791 (2006).

    Article  Google Scholar 

  19. O’Driscoll, B. et al. Chemical heterogeneity in the upper mantle recorded by peridotites and chromitites from the Shetland Ophiolite Complex, Scotland. Earth Planet. Sci. Lett. 333–334, 226–237 (2012).

    Article  Google Scholar 

  20. González-Jiménez, J. M. et al. Os-isotope variability within sulfides from podiform chromitites. Chem. Geol. 291, 224–235 (2012).

    Article  Google Scholar 

  21. González-Jiménez, J. M. et al. Transfer of Os isotopic signatures from peridotite to chromitite in the subcontinental mantle: insights from in situ analysis of platinum-group and base-metal minerals (Ojén peridotite massif, southern Spain). Lithos 164–167, 74–85 (2013).

    Article  Google Scholar 

  22. Arai, S. & Yurimoto, H. Podiform chromitites of the Tari-Misaka ultramafic complex, southwestern Japan, as mantle-melt interaction products. Econ. Geol. 89, 1279–1288 (1994).

    Article  Google Scholar 

  23. Zhou, M. F., Robinson, P. T. & Bai, W. J. Formation of podiform chromitites by melt/rock interaction in the upper mantle. Miner. Deposita 29, 98–101 (1994).

    Article  Google Scholar 

  24. Arai, S. Control of wall-rock composition on the formation of podiform chromitites as a result of magma/peridotite interaction. Resour. Geol. 47, 177–187 (1997).

    Google Scholar 

  25. Bai, W. J., Zhou, M. F. & Robinson, P. T. Possibly diamond-bearing mantle peridotites and podiform chromitites in the Luobusa and Donqiao ophiolites, Tibet. Can. J. Earth Sci. 30, 1650–1659 (1993).

    Article  Google Scholar 

  26. Yang, J. S. et al. Diamond- and coesite-bearing chromitites from the Luobusa ophiolite, Tibet. Geology 35, 875–878 (2007). First observation of in situ diamond within an OsIr alloy recovered from podiform chromitites, changing the traditional shallow depth formation theory.

    Article  Google Scholar 

  27. Dobrzhinetskaya, L. F. et al. High-pressure highly reduced nitrides and oxides from chromitite of a Tibetan ophiolite. Proc. Natl Acad. Sci. USA 106, 19233–19238 (2009).

    Article  Google Scholar 

  28. Lian, D. et al. Carbon and nitrogen isotope, and mineral inclusion studies on the diamonds from the Pozanti–Karsanti chromitite, Turkey. Contrib. Mineral. Petrol. 173, 72 (2018).

    Article  Google Scholar 

  29. Wu, W. et al. Carbon and nitrogen isotopes and mineral inclusions in diamonds from chromitites of the Mirdita ophiolite (Albania) demonstrate recycling of oceanic crust into the mantle. Am. Mineral. 104, 485–500 (2019).

    Article  Google Scholar 

  30. Yamamoto, S., Komiya, T., Hirose, K. & Maruyama, S. Coesite and clinopyroxene exsolution lamellae in chromites: in-situ ultrahigh-pressure evidence from podiform chromitites in the Luobusa ophiolite, southern Tibet. Lithos 109, 314–322 (2009). Petrological evidence of a deep mantle origin of podiform chromitites.

    Article  Google Scholar 

  31. Arai, S. Conversion of low-pressure chromitites to ultrahigh-pressure chromitites by deep recycling: a good inference. Earth Planet. Sci. Lett. 379, 81–87 (2013).

    Article  Google Scholar 

  32. Zhou, M. F. et al. Compositions of chromite, associated minerals, and parental magmas of podiform chromite deposits: the role of slab contamination of asthenospheric melts in suprasubduction zone environments. Gondwana Res. 26, 262–283 (2014).

    Article  Google Scholar 

  33. Robinson, P. T. et al. The origin and significance of crustal minerals in ophiolitic chromitites and peridotites. Gondwana Res. 27, 486–506 (2015).

    Article  Google Scholar 

  34. Yang, J. et al. Diamonds, native elements and metal alloys from chromitites of the Ray-Iz ophiolite of the Polar Urals. Gondwana Res. 27, 459–485 (2015). Discovery of in situ diamonds in chromite grains, proving that these ultra-high-pressure minerals are intrinsic to the rock and confirming the deep mantle origin of ophiolite.

    Article  Google Scholar 

  35. Griffin, W. L. et al. Mantle recycling: transition zone metamorphism of Tibetan ophiolitic peridotites and its tectonic implications. J. Petrol. 57, 655–684 (2016).

    Article  Google Scholar 

  36. Rampone, E. & Hofmann, A. W. A global overview of isotopic heterogeneities in the oceanic mantle. Lithos 148, 247–261 (2012). Comprehensive overview of the knowledge about the isotope aspects of the oceanic mantle and mantle–crust relations.

    Article  Google Scholar 

  37. Ishii, T., Robinson, P. T., Maekawa, H. & Fiske, R. Petrological studies of peridotites from diapiric serpentinite seamounts in the Izu-Ogasawara-Mariana forearc, Leg 125. Proc. ODP Sci. Results 125, 445–486 (1992).

    Google Scholar 

  38. Parkinson, I. J. & Pearce, J. A. Peridotites from the Izu–Bonin–Mariana Forearc (ODP Leg 125): evidence for mantle melting and melt–mantle interaction in a supra-subduction zone setting. J. Petrol. 39, 1577–1618 (1998).

    Article  Google Scholar 

  39. Pearce, J. A., Barker, P. F., Edwards, S. J., Parkinson, I. J. & Leat, P. T. Geochemistry and tectonic significance of peridotites from the South Sandwich arc–basin system, South Atlantic. Contrib. Mineral. Petrol. 139, 36–53 (2000).

    Article  Google Scholar 

  40. Okamura, H., Arai, S. & Kim, Y. U. Petrology of forearc peridotite from the Hahajima Seamount, the Izu-Bonin arc, with special reference to chemical characteristics of chromian spinel. Mineral. Mag. 70, 15–26 (2006).

    Article  Google Scholar 

  41. Zimmer, M., Kröner, A., Jochum, K. P., Reischmann, T. & Todt, W. The Gabal Gerf complex: a precambrian N-MORB ophiolite in the Nubian Shield, NE Africa. Chem. Geol. 123, 29–51 (1995).

    Article  Google Scholar 

  42. Rampone, E., Piccardo, G. B. & Hofmann, A. W. Multi-stage melt–rock interaction in the Mt. Maggiore (Corsica, France) ophiolitic peridotites: microstructural and geochemical evidence. Contrib. Mineral. Petrol. 156, 453–475 (2008).

    Article  Google Scholar 

  43. Bodinier, J.-L. & Godard, M. in Treatise on Geochemistry 2nd edn 103-167 (Elsevier, 2014).

  44. Abdel-Karim, A.-A. M., Ali, S., Helmy, H. M. & El-Shafei, S. A. A fore-arc setting of the Gerf ophiolite, Eastern Desert, Egypt: evidence from mineral chemistry and geochemistry of ultramafites. Lithos 263, 52–65 (2016).

    Article  Google Scholar 

  45. Mazzeo, F. C. et al. Evidence for an intra-oceanic affinity of the serpentinized peridotites from the Mt. Pollino ophiolites (Southern Ligurian Tethys): insights into the peculiar tectonic evolution of the Southern Apennines. Lithos 284–285, 367–380 (2017).

    Article  Google Scholar 

  46. Basch, V. et al. From mantle peridotites to hybrid troctolites: textural and chemical evolution during melt-rock interaction history (Mt. Maggiore, Corsica, France). Lithos 323, 4–23 (2018).

    Article  Google Scholar 

  47. Evans, B. & Frost, B. R. Chrome-spine1 in progressive metamorphism — a preliminary analysis. Geochim. Cosmochim. Acta 39, 959–972 (1975).

    Article  Google Scholar 

  48. Dick, H. J. B. & Bullen, T. Chromian spinel as a petrogenetic indicator in abyssal and Alpine-type peridotites and spatially associated lavas. Contrib. Mineral. Petrol. 86, 54–76 (1984).

    Article  Google Scholar 

  49. Johnson, K. T. M., Dick, H. J. B. & Shimizu, N. Melting in the oceanic upper mantle: an ion microprobe study of diopsides in abyssal peridotites. J. Geophys. Res. Solid Earth 95, 2661–2678 (1990).

    Article  Google Scholar 

  50. Seyler, M., Toplis, M. J., Lorand, J. P., Luguet, A. & Cannat, M. Clinopyroxene microtextures reveal incompletely extracted melts in abyssal peridotites. Geology 29, 155–158 (2001).

    Article  Google Scholar 

  51. Pagé, P., Bédard, J. H., Schroetter, J.-M. & Tremblay, A. Mantle petrology and mineralogy of the Thetford Mines Ophiolite Complex. Lithos 100, 255–292 (2008).

    Article  Google Scholar 

  52. Seyler, M. & Brunelli, D. Sodium-chromium covariation in residual clinopyroxenes from abyssal peridotites sampled in the 43°–46°E region of the Southwest Indian Ridge. Lithos 302–303, 142–157 (2018).

    Article  Google Scholar 

  53. Gamal El Dien, H. et al. Cr-spinel records metasomatism not petrogenesis of mantle rocks. Nat. Commun. 10, 5103 (2019).

    Article  Google Scholar 

  54. Arai, S. & Miura, M. Podiform chromitites do form beneath mid-ocean ridges. Lithos 232, 143–149 (2015).

    Article  Google Scholar 

  55. Arai, S. & Miura, M. Formation and modification of chromitites in the mantle. Lithos 264, 277–295 (2016).

    Article  Google Scholar 

  56. Dick, H. J. B., Lissenberg, J. & Warren, J. M. Mantle melting, melt transport, and delivery beneath a slow-spreading ridge: the paleo-MAR from 23°15′N to 23°45′N. J. Petrol. 51, 425–467 (2010).

    Article  Google Scholar 

  57. González-Jiménez, J. M. et al. Chromitites in ophiolites: how, where, when, why? Part II. The crystallization of chromitites. Lithos 189, 140–158 (2014).

    Article  Google Scholar 

  58. Rollinson, H. The geochemistry of mantle chromitites from the northern part of the Oman ophiolite: inferred parental melt compositions. Contrib. Mineral. Petrol. 156, 273–288 (2008).

    Article  Google Scholar 

  59. Zhou, M. F. & Robinson, P. T. High-Cr and high-Al podiform chromitites, western China: relationship to partial melting and melt/rock reaction in the upper mantle. Int. Geol. Rev. 36, 678–686 (1994). The classic formation model considers that podiform chromitites formed by localized melt–rock interaction of tholeiite-like or boninite-like magma with peridotitic wall rocks at the upper mantle level.

    Article  Google Scholar 

  60. Zhou, M. F. & Robinson, P. T. Origin and tectonic environment of podiform chromite deposits. Econ. Geol. 92, 259–262 (1997).

    Article  Google Scholar 

  61. Whattam, S. A. Arc-continent collisional orogenesis in the SW Pacific and the nature, source and correlation of emplaced ophiolitic nappe components. Lithos 113, 88–114 (2009).

    Article  Google Scholar 

  62. Kaczmarek, M.-A., Jonda, L. & Davies, H. L. Evidence of melting, melt percolation and deformation in a supra-subduction zone (Marum ophiolite complex, Papua New Guinea). Contrib. Mineral. Petrol. 170, 19 (2015).

    Article  Google Scholar 

  63. Nicolas, A., Boudier, F., Ildefonse, B. & Ball, E. Accretion of Oman and United Arab Emirates ophiolite–discussion of a new structural map. Mar. Geophys. Res. 21, 147–180 (2000).

    Article  Google Scholar 

  64. Pearce, J. A. & Robinson, P. T. The Troodos ophiolitic complex probably formed in a subduction initiation, slab edge setting. Gondwana Res. 18, 60–81 (2010).

    Article  Google Scholar 

  65. Nicolas, A. & Boudier, F. Emplacement of Semail–Emirates ophiolite at ridge–trench collision. Terra Nova 29, 127–134 (2017).

    Article  Google Scholar 

  66. Prigent, C., Agard, P., Guillot, S., Godard, M. & Dubacq, B. Mantle wedge (de)formation during subduction infancy: evidence from the base of the Semail ophiolitic mantle. J. Petrol. 59, 2061–2092 (2018).

    Article  Google Scholar 

  67. Woelki, D., Regelous, M., Haase, K. M., Romer, R. H. W. & Beier, C. Petrogenesis of boninitic lavas from the Troodos ophiolite, and comparison with Izu–Bonin–Mariana fore-arc crust. Earth Planet. Sci. Lett. 498, 203–214 (2018).

    Article  Google Scholar 

  68. Takazawa, E., Okayasu, T. & Satoh, K. Geochemistry and origin of the basal lherzolites from the northern Oman ophiolite (northern Fizh block). Geochem. Geophys. Geosyst. 4, 1021 (2003).

    Article  Google Scholar 

  69. Crameri, F. et al. A transdisciplinary and community-driven database to unravel subduction zone initiation. Nat. Commun. 11, 3750 (2020).

    Article  Google Scholar 

  70. Zhou, M. F., Robinson, P. T., Malpas, J. & Li, Z. Podiform chromitites in the Luobusa ophiolite (southern Tibet): implications for melt-rock interaction and chromite segregation in the upper mantle. J. Petrol. 37, 3–21 (1996).

    Article  Google Scholar 

  71. Walker, R. J., Prichard, H. M., Ishiwatari, A. & Pimentel, M. The Osmium isotopic composition of the convecting upper mantle deduced from ophiolitic chromites. Geochim. Cosmochim. Acta 66, 329–345 (2002).

    Article  Google Scholar 

  72. Shi, R. et al. Multiple events in the Neo-Tethyan oceanic upper mantle: evidence from Ru–Os–Ir alloys in the Luobusa and Dongqiao ophiolitic podiform chromitites, Tibet. Earth Planet. Sci. Lett. 261, 33–48 (2007).

    Article  Google Scholar 

  73. Shi, R. et al. Archean mantle contributes to the genesis of chromitite in the Palaeozoic Sartohay ophiolite, Asiatic Orogenic Belt, northwestern China. Precambrian Res. 216–219, 87–94 (2012).

    Article  Google Scholar 

  74. Hassler, D. R. & Shimizu, N. Osmium isotopic evidence for ancient subcontinental lithospheric mantle beneath the Kerguelen Islands, Southern Indian Ocean. Science 280, 418–421 (1998).

    Article  Google Scholar 

  75. Rampone, E., Romairone, A., Abouchami, W., Piccardo, G. B. & Hofmann, A. W. Chronology, petrology and isotope geochemistry of the Erro-Tobbio peridotites (Ligurian Alps, Italy): records of late Palaeozoic lithospheric extension. J. Petrol. 46, 799–827 (2005).

    Article  Google Scholar 

  76. O’Reilly, S. Y., Zhang, M., Griffin, W. L., Begg, G. & Hronsky, J. Ultradeep continental roots and their oceanic remnants: a solution to the geochemical “mantle reservoir” problem? Lithos 112, 1043–1054 (2009).

    Article  Google Scholar 

  77. Liu, C. Z. et al. Ancient, highly heterogeneous mantle beneath Gakkel ridge, Arctic Ocean. Nature 452, 311–316 (2008).

    Article  Google Scholar 

  78. Arai, S. & Matsukage, K. Petrology of gabbro-troctolite-peridotite complex from Hess Deep, equatorial Pacific: implications for mantle-melt interaction within the oceanic lithosphere. Proc. ODP Sci. Results 147, 135–155 (1996).

    Google Scholar 

  79. Arai, S. & Matsukage, K. Petrology of a chromitite micropod from Hess Deep, equatorial Pacific: a comparison between abyssal and alpine-type podiform chromitites. Lithos 43, 1–14 (1998).

    Article  Google Scholar 

  80. Liipo, J., Vuollo, J., Nyknen, V., Piirainen, T. & Tuokko, I. Chromites from the early Proterozoic Outokumpu-Jormua Ophiolite Belt: a comparison with chromites from Mesozoic ophiolites. Lithos 36, 15–27 (1995).

    Article  Google Scholar 

  81. Edwards, S. J., Pearce, J. A. & Freeman, J. in Ophiolites and Oceanic Crust: New Insights from Field Studies and the Ocean Drilling Program Vol. 349 (eds Dilek, Y., Moores, E. M., Elthon, D. & Nicolas, A.) 139-147 (Geological Society of America, 2000).

  82. **ong, Q. et al. High- and low-Cr chromitite and dunite in a Tibetan ophiolite: evolution from mature subduction system to incipient forearc in the Neo-Tethyan Ocean. Contrib. Mineral. Petrol. 172, 45 (2017).

    Article  Google Scholar 

  83. Mukherjee, R. & Mondal, S. K. in Processes and Ore Deposits of Ultramafic-Mafic Magmas through Space and Time (eds Mondal, S. K. & Griffin, W. L.) 159–195 (Elsevier, 2018).

  84. Rollinson, H. & Adetunji, J. Mantle podiform chromitites do not form beneath mid-ocean ridges: a case study from the Moho transition zone of the Oman ophiolite. Lithos 177, 314–327 (2013).

    Article  Google Scholar 

  85. Borisova, A. Y. et al. A new view on the petrogenesis of the Oman ophiolite chromitites from microanalyses of chromite-hosted inclusions. J. Petrol. 53, 2411–2440 (2012).

    Article  Google Scholar 

  86. Kamenetsky, V. S., Crawford, A. J. & Meffre, S. Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. J. Petrol. 42, 655–671 (2001).

    Article  Google Scholar 

  87. Rollinson, H., Mameri, L. & Barry, T. Polymineralic inclusions in mantle chromitites from the Oman ophiolite indicate a highly magnesian parental melt. Lithos 310–311, 381–391 (2018).

    Article  Google Scholar 

  88. Kelemen, P. B., Koga, K. & Shimizu, N. Geochemistry of gabbro sills in the crust-mantle transition zone of the Oman ophiolite: implications for the origin of the oceanic lower crust. Earth Planet. Sci. Lett. 146, 475–488 (1997).

    Article  Google Scholar 

  89. González-Jiménez, J. M. et al. Chromitites in ophiolites: how, where, when, why? Part I. A review and new ideas on the origin and significance of platinum-group minerals. Lithos 189, 127–139 (2014).

    Article  Google Scholar 

  90. **ong, Q. et al. Sulfide in dunite channels reflects long-distance reactive migration of mid-ocean-ridge melts from mantle source to crust: a Re-Os isotopic perspective. Earth Planet. Sci. Lett. 531, 115969 (2020).

    Article  Google Scholar 

  91. Pagé, P. & Barnes, S. J. Using trace elements in chromites to constrain the origin of podiform chromitites in the Thetford Mines ophiolite, Québec, Canada. Econ. Geol. 104, 997–1018 (2009).

    Article  Google Scholar 

  92. **ong, F. et al. Origin of podiform chromitite, a new model based on the Luobusa ophiolite, Tibet. Gondwana Res. 27, 525–542 (2015).

    Article  Google Scholar 

  93. Su, B. X., Zhou, M. F. & Robinson, P. T. Extremely large fractionation of Li isotopes in a chromitite-bearing mantle sequence. Sci. Rep. 6, 22370 (2016).

    Article  Google Scholar 

  94. Zhou, M. F., Robinson, P. T., Malpas, J., Edwards, S. J. & Qi, L. REE and PGE geochemical constraints on the formation of dunites in the Luobusa ophiolite, southern Tibet. J. Petrol. 46, 615–639 (2005).

    Article  Google Scholar 

  95. González-Jiménez, J. M. et al. High-Cr and high-Al chromitites from the Sagua de Tánamo district, Mayarí-Cristal ophiolitic massif (eastern Cuba): constraints on their origin from mineralogy and geochemistry of chromian spinel and platinum-group elements. Lithos 125, 101–121 (2011).

    Article  Google Scholar 

  96. Rui, H., Jiao, J., **a, M., Yang, J. & **a, Z. Origin of chromitites in the Songshugou peridotite Massif, Qinling Orogen (Central China): mineralogical and geochemical evidence. J. Earth Sci. 30, 476–493 (2019).

    Article  Google Scholar 

  97. Lian, D., Yang, J., Dilek, Y. & Rocholl, A. Mineralogy and geochemistry of peridotites and chromitites in the Aladag ophiolite (southern Turkey): melt evolution of the Cretaceous Neotethyan mantle. J. Geol. Soc. 176, 958–974 (2019).

    Article  Google Scholar 

  98. Palme, H. & O’Neill, H. in Treatise on Geochemistry 2nd edn 1–38 (Elsevier, 2014).

  99. Melcher, F., Grum, W., Simon, G., Thalhammer, T. V. & Stumpfl, E. F. Petrogenesis of the ophiolitic giant chromite deposits of Kempirsai, Kazakhstan: a study of solid and fluid inclusions in chromite. J. Petrol. 38, 1419–1458 (1997).

    Article  Google Scholar 

  100. Leblanc, M. & Ceuleneer, G. Chromite crystallization in a multicellular magma flow: evidence from a chromitite dike in the Oman ophiolite. Lithos 27, 231–257 (1991).

    Article  Google Scholar 

  101. Johan, Z., Martin, R. F. & Ettler, V. Fluids are bound to be involved in the formation of ophiolitic chromite deposits. Eur. J. Mineral. 29, 543–555 (2017).

    Article  Google Scholar 

  102. Matveev, S. & Ballhaus, C. Role of water in the origin of podiform chromitite deposits. Earth Planet. Sci. Lett. 203, 235–243 (2002).

    Article  Google Scholar 

  103. Wilkinson, J. J. Triggers for the formation of porphyry ore deposits in magmatic arcs. Nat. Geosci. 6, 917–925 (2013).

    Article  Google Scholar 

  104. Su, B. X. et al. The occurrence, origin, and fate of water in chromitites in ophiolites. Am. Mineral. 105, 894–903 (2020).

    Article  Google Scholar 

  105. Pearson, D. G. et al. Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature 507, 221–224 (2014).

    Article  Google Scholar 

  106. Saveliev, D. E. & Fedoseev, V. B. Solid-state redistribution of mineral particles in the upwelling mantle flow as a mechanism of chromite concentration in the ophiolite ultramafic rocks (by the example of Kraka ophiolite, the Southern Urals). Georesources 21, 31–46 (2019).

    Article  Google Scholar 

  107. Chen, T., **, Z., Zhang, J. & Wang, L. Calcium amphibole exsolution lamellae in chromite from the Semail ophiolite: evidence for a high-pressure origin. Lithos 334–335, 273–280 (2019).

    Article  Google Scholar 

  108. Satsukawa, T., Griffin, W. L., Piazolo, S. & O’Reilly, S. Y. Messengers from the deep: fossil wadsleyite-chromite microstructures from the mantle transition zone. Sci. Rep. 5, 16484 (2015).

    Article  Google Scholar 

  109. McCammon, C. The paradox of mantle redox. Science 308, 807–808 (2005).

    Article  Google Scholar 

  110. Ruskov, T. et al. Mössbauer spectroscopy studies of the valence state of iron in chromite from the Luobusa massif of Tibet: implications for a highly reduced deep mantle. J. Metamorph. Geol. 28, 551–560 (2010).

    Article  Google Scholar 

  111. McGowan, N. M. et al. Tibetan chromitites: excavating the slab graveyard. Geology 43, 179–182 (2015).

    Article  Google Scholar 

  112. Wu, Y., Xu, M., **, Z., Fei, Y. & Robinson, P. T. Experimental constraints on the formation of the Tibetan podiform chromitites. Lithos 245, 109–117 (2016).

    Article  Google Scholar 

  113. Zhang, Y., **, Z., Griffin, W. L., Wang, C. & Wu, Y. High-pressure experiments provide insights into the mantle transition zone history of chromitite in Tibetan ophiolites. Earth Planet. Sci. Lett. 463, 151–158 (2017).

    Article  Google Scholar 

  114. Ishii, T. et al. High-pressure phase transitions in FeCr2O4 and structure analysis of new post-spinel FeCr2O4 and Fe2Cr2O5 phases with meteoritical and petrological implications. Am. Mineral. 99, 1788–1797 (2014).

    Article  Google Scholar 

  115. Ishii, T. et al. High-pressure high-temperature transitions in MgCr2O4 and crystal structures of new Mg2Cr2O5 and post-spinel MgCr2O4 phases with implications for ultrahigh-pressure chromitites in ophiolites. Am. Mineral. 100, 59–65 (2015).

    Article  Google Scholar 

  116. Das, S., Mukherjee, B. K., Basu, A. R. & Sen, K. Jr. Peridotitic minerals of the Nidar ophiolite in the NW Himalaya: sourced from the depth of the mantle transition zone and above. Geol. Soc. Lond. Spec. Publ. 412, 271–286 (2015).

    Article  Google Scholar 

  117. Das, S., Basu, A. R. & Mukherjee, B. K. In situ peridotitic diamond in Indus ophiolite sourced from hydrocarbon fluids in the mantle transition zone. Geology 45, 755–758 (2017). First occurrence of in situ diamonds discovered in orthoenstatite grains, proving that these ultra-high-pressure minerals are intrinsic to ophiolitic harzburgites and confirming the deep mantle origin of ophiolite.

    Google Scholar 

  118. Shirey, S. B. et al. Diamonds and the geology of mantle carbon. Rev. Mineral. Geochem. 75, 355–421 (2013).

    Article  Google Scholar 

  119. Ogasawara, Y. Microdiamonds in ultrahigh-pressure metamorphic rocks. Elements 1, 91–96 (2005).

    Article  Google Scholar 

  120. Liou, J. G., Ernst, W. G., Zhang, R. Y., Tsujimori, T. & Jahn, B. M. Ultrahigh-pressure minerals and metamorphic terranes – The view from China. J. Asian Earth Sci. 35, 199–231 (2009).

    Article  Google Scholar 

  121. Cartigny, P. Stable isotopes and the origin of diamond. Elements 1, 79–84 (2005).

    Article  Google Scholar 

  122. Huss, G. R. Meteoritic nanodiamonds: messengers from the Stars. Elements 1, 97–100 (2005).

    Article  Google Scholar 

  123. Hazen, R., Downs, R., Jones, A. & Kah, L. Carbon mineralogy and crystal chemistry. Rev. Mineral. Geochem. 75, 7–46 (2013).

    Article  Google Scholar 

  124. Yang, J. S., Robinson, P. T. & Dilek, Y. Diamonds in ophiolites. Elements 10, 127–130 (2014).

    Article  Google Scholar 

  125. Fang, Q. S. & Bai, W. J. The discovery of Alpine-type diamond bearing ultrabasic intrusions in **zang (Tibet). Geol. Rev. 5, 455–457 (1981).

    Google Scholar 

  126. Howell, D. et al. Diamonds in ophiolites: contamination or a new diamond growth environment? Earth Planet. Sci. Lett. 430, 284–295 (2015).

    Article  Google Scholar 

  127. Lian, D. et al. Deep mantle origin and ultra-reducing conditions in podiform chromitite: diamond, moissanite, and other unusual minerals in podiform chromitites from the Pozanti-Karsanti ophiolite, southern Turkey. Am. Mineral. 102, 1101–1113 (2017).

    Google Scholar 

  128. Chen, Y., Yang, J., Xu, Z., Tian, Y. & Lai, S. Diamonds and other unusual minerals from peridotites of the Myitkyina ophiolite, Myanmar. J. Asian Earth Sci. 164, 179–193 (2018).

    Article  Google Scholar 

  129. Farré-de-Pablo, J. et al. A shallow origin for diamonds in ophiolitic chromitites. Geology 47, 75–78 (2018).

    Article  Google Scholar 

  130. Pujol-Solà, N. et al. Diamond forms during low pressure serpentinisation of oceanic lithosphere. Geochem. Perspect. Lett. 15, 19–24 (2020).

    Article  Google Scholar 

  131. Dobrzhinetskaya, L., Wirth, R. & Green, H. Diamonds in Earth’s oldest zircons from Jack Hills conglomerate, Australia, are contamination. Earth Planet. Sci. Lett. 387, 212–218 (2014).

    Article  Google Scholar 

  132. Lian, D. et al. Precambrian zircons in chromitites of the Cretaceous Aladag ophiolite (Turkey) indicate deep crustal recycling in oceanic mantle. Precambrian Res. 350, 105838 (2020).

    Article  Google Scholar 

  133. Moe, K. S., Yang, J. S., Johnson, P., Xu, X. & Wang, W. Spectroscopic analysis of microdiamonds in ophiolitic chromitite and peridotite. Lithosphere 10, 133–141 (2017).

    Google Scholar 

  134. Smith, C. B. et al. Diamonds from Dachine, French Guiana: a unique record of early Proterozoic subduction. Lithos 265, 82–95 (2016).

    Article  Google Scholar 

  135. Klein-BenDavid, O., Wirth, R. & Navon, O. TEM imaging and analysis of microinclusions in diamonds: a close look at diamond-growing fluids. Am. Mineral. 91, 353–365 (2006).

    Article  Google Scholar 

  136. Dobrzhinetskaya, L. F. Microdiamonds — frontier of ultrahigh-pressure metamorphism: a review. Gondwana Res. 21, 207–223 (2012).

    Article  Google Scholar 

  137. Yamamoto, S. et al. Recycled crustal zircons from podiform chromitites in the Luobusa ophiolite, southern Tibet. Isl. Arc 22, 89–103 (2013).

    Article  Google Scholar 

  138. Yang, J., Robinson, P. T. & Dilek, Y. Diamond-bearing ophiolites and their geological occurrence. Episodes 38, 344–364 (2015).

    Article  Google Scholar 

  139. Rohrbach, A., Ballhaus, C., Ulmer, P., Golla-Schindler, U. & Schoenbohm, D. Experimental evidence for a reduced metal-saturated upper mantle. J. Petrol. 52, 717–731 (2011).

    Article  Google Scholar 

  140. Shim, S.-H., Duffy, T. S. & Shen, G. The stability and P-V-T equation of state of CaSiO3 perovskite in the Earth’s lower mantle. J. Geophys. Res. Solid Earth 105, 25955–25968 (2000).

    Article  Google Scholar 

  141. Fu**o, K. et al. High-pressure phase relation of MnSiO3 up to 85 GPa: existence of MnSiO3 perovskite. Am. Mineral. 93, 653–657 (2008).

    Article  Google Scholar 

  142. Li, L. et al. Superior solid solubility of MnSiO3 in CaSiO3 perovskite. Phys. Chem. Miner. 42, 123–129 (2015).

    Article  Google Scholar 

  143. Lian, D. & Yang, J. Ophiolite-hosted diamond: a new window for probing carbon cycling in the deep mantle. Engineering 5, 406–420 (2019).

    Article  Google Scholar 

  144. Xu, X. et al. Fourier transform infrared spectroscopy data and carbon isotope characteristics of the ophiolite-hosted diamonds from the Luobusa ophiolite, Tibet, and Ray-Iz ophiolite, Polar Urals. Lithosphere 10, 156–169 (2017).

    Article  Google Scholar 

  145. Rollinson, H. Surprises from the top of the mantle transition zone. Geol. Today 32, 58–64 (2016).

    Article  Google Scholar 

  146. Dilek, Y. & Yang, J. Ophiolites, diamonds, and ultrahigh-pressure minerals: new discoveries and concepts on upper mantle petrogenesis. Lithosphere 10, 3–13 (2018).

    Article  Google Scholar 

  147. Bijwaard, H., Spakman, W. & Engdahl, E. R. Closing the gap between regional and global travel time tomography. J. Geophys. Res. 1033, 30055–30078 (1998).

    Article  Google Scholar 

  148. Zhao, D. Global tomographic images of mantle plumes and subducting slabs: insight into deep Earth dynamics. Phys. Earth Planet. Inter. 146, 3–34 (2004). Conclusive geophysical evidence showing the subduction of the slab into the mantle transition zone, which is the major pathway of recycling crustal material back into Earth’s deep interior.

    Article  Google Scholar 

  149. Hofmann, A. W. Mantle geochemistry: the message from oceanic volcanism. Nature 385, 218–229 (1997). Mantle heterogeneity and recycling of crustal materials proved by oceanic basalt geochemistry.

    Article  Google Scholar 

  150. Sobolev, A. V. et al. The amount of recycled crust in sources of mantle-derived melts. Science 316, 1138113 (2007).

    Article  Google Scholar 

  151. Walter, M. J. et al. Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions. Science 334, 54–57 (2011). Mineralogical evidence of deep mantle cycling of subducted crustal materials record in super-deep diamonds.

    Article  Google Scholar 

  152. González-Jiménez, J. M. et al. Genesis and tectonic implications of podiform chromitites in the metamorphosed ultramafic massif of Dobromirtsi (Bulgaria). Gondwana Res. 27, 555–574 (2015).

    Article  Google Scholar 

  153. Akbulut, M. et al. Tracing ancient events in the lithospheric mantle: a case study from ophiolitic chromitites of SW Turkey. J. Asian Earth Sci. 119, 1–19 (2016).

    Article  Google Scholar 

  154. Arndt, N. & Goldstein, S. An open boundary between lower continental-crust and mantle–its role in crust formation and crustal recycling. Tectonophysics 161, 201–212 (1989).

    Article  Google Scholar 

  155. Rehkämper, M. & Hofmann, A. W. Recycled ocean crust and sediment in Indian Ocean MORB. Earth Planet. Sci. Lett. 147, 93–106 (1997).

    Article  Google Scholar 

  156. Hanan, B. B., Blichert-Toft, J., Pyle, D. G. & Christie, D. M. Corrigendum: Contrasting origins of the upper mantle revealed by hafnium and lead isotopes from the Southeast Indian Ridge. Nature 432, 91–94 (2004).

    Article  Google Scholar 

  157. Trumbull, R. B. et al. The carbon isotope composition of natural SiC (moissanite) from the Earth’s mantle: new discoveries from ophiolites. Lithos 113, 612–620 (2009).

    Article  Google Scholar 

  158. Kirkley, M. B., Gurney, J. J., Otter, M. L., Hill, S. J. & Daniels, L. R. The application of C isotope measurements to the identification of the sources of C in diamonds: a review. Appl. Geochem. 6, 477–494 (1991).

    Article  Google Scholar 

  159. Deines, P. The carbon isotopic composition of diamonds: relationship to diamond shape, color, occurrence and vapor composition. Geochim. Cosmochim. Acta 44, 943–961 (1980).

    Article  Google Scholar 

  160. Tappert, R. et al. Subducting oceanic crust: the source of deep diamonds. Geology 33, 565–568 (2005).

    Article  Google Scholar 

  161. Hofmann, A. W. & White, W. M. Mantle plumes from ancient ocean crust. Earth Planet. Sci. Lett. 57, 421–436 (1982).

    Article  Google Scholar 

  162. Stroncik, N. A. & Devey, C. W. Recycled gabbro signature in hotspot magmas unveiled by plume–ridge interactions. Nat. Geosci. 4, 393–397 (2011).

    Article  Google Scholar 

  163. Wang, X. J. et al. Recycled ancient ghost carbonate in the Pitcairn mantle plume. Proc. Natl. Acad. Sci. USA 115, 8682–8687 (2018).

    Article  Google Scholar 

  164. Sobolev, A. V., Hofmann, A. W., Sobolev, S. V. & Nikogosian, I. K. An olivine-free mantle source of Hawaiian shield basalts. Nature 434, 590–597 (2005).

    Article  Google Scholar 

  165. Gerbode, C. & Dasgupta, R. Carbonate-fluxed melting of MORB-like pyroxenite at 2.9 GPa and genesis of HIMU Ocean Island Basalts. J. Petrol. 51, 2067–2088 (2010).

    Article  Google Scholar 

  166. Montanini, A., Tribuzio, R. & Thirlwall, M. Garnet clinopyroxenite layers from the mantle sequences of the Northern Apennine ophiolites (Italy): evidence for recycling of crustal material. Earth Planet. Sci. Lett. 351-352, 171–181 (2012).

    Article  Google Scholar 

  167. Sergeev, D. S., Dijkstra, A. H., Meisel, T., Brügmann, G. & Sergeev, S. A. Traces of ancient mafic layers in the Tethys oceanic mantle. Earth Planet. Sci. Lett. 389, 155–166 (2014).

    Article  Google Scholar 

  168. van Acken, D., Becker, H., Hammerschmidt, K., Walker, R. J. & Wombacher, F. Highly siderophile elements and Sr–Nd isotopes in refertilized mantle peridotites — a case study from the Totalp ultramafic body, Swiss Alps. Chem. Geol. 276, 257–268 (2010).

    Article  Google Scholar 

  169. Ishikawa, A., Kuritani, T., Makishima, A. & Nakamura, E. Ancient recycled crust beneath the Ontong Java Plateau: isotopic evidence from the garnet clinopyroxenite xenoliths, Malaita, Solomon Islands. Earth Planet. Sci. Lett. 259, 134–148 (2007).

    Article  Google Scholar 

  170. Gleeson, M. L. M., Gibson, S. A. & Williams, H. M. Novel insights from Fe-isotopes into the lithological heterogeneity of Ocean Island Basalts and plume-influenced MORBs. Earth Planet. Sci. Lett. 535, 116114 (2020).

    Article  Google Scholar 

  171. Ishikawa, T. & Nakamura, E. Origin of the slab component in arc lavas from across-arc variation of B and Pb isotopes. Nature 370, 205–208 (1994).

    Article  Google Scholar 

  172. Manning, C. E. The chemistry of subduction-zone fluids. Earth Planet. Sci. Lett. 223, 1–16 (2004).

    Article  Google Scholar 

  173. Maruyama, S., Santosh, M. & Zhao, D. Superplume, supercontinent, and post-perovskite: mantle dynamics and anti-plate tectonics on the core–mantle boundary. Gondwana Res. 11, 7–37 (2007).

    Article  Google Scholar 

  174. Helffrich, G. R. & Wood, B. J. The Earth’s mantle. Nature 412, 501–507 (2001).

    Article  Google Scholar 

  175. Hastie, A. R. et al. The composition of mantle plumes and the deep Earth. Earth Planet. Sci. Lett. 444, 13–25 (2016).

    Article  Google Scholar 

  176. Wang, X. J. et al. Mantle transition zone-derived EM1 component beneath NE China: geochemical evidence from Cenozoic potassic basalts. Earth Planet. Sci. Lett. 465, 16–28 (2017).

    Article  Google Scholar 

  177. Gurney, J. J., Helmstaedt, H. H., Richardson, S. H. & Shirey, S. B. Diamonds through time. Econ. Geol. 105, 689–712 (2010).

    Article  Google Scholar 

  178. Cartigny, P. Mantle-related carbonados? Geochemical insights from diamonds from the Dachine komatiite (French Guiana). Earth Planet. Sci. Lett. 296, 329–339 (2010).

    Article  Google Scholar 

  179. Nestola, F. et al. CaSiO3 perovskite in diamond indicates the recycling of oceanic crust into the lower mantle. Nature 555, 237–241 (2018).

    Article  Google Scholar 

  180. Harte, B. Diamond formation in the deep mantle: the record of mineral inclusions and their distribution in relation to mantle dehydration zones. Mineral. Mag. 74, 189–215 (2010).

    Article  Google Scholar 

  181. Kaminsky, F. Mineralogy of the lower mantle: a review of ‘super-deep’ mineral inclusions in diamond. Earth Sci. Rev. 110, 127–147 (2012).

    Article  Google Scholar 

  182. Anzolini, C. et al. Depth of formation of CaSiO3-walstromite included in super-deep diamonds. Lithos 265, 138–147 (2016).

    Article  Google Scholar 

  183. Smith, E. M. et al. Blue boron-bearing diamonds from Earth’s lower mantle. Nature 560, 84–87 (2018).

    Article  Google Scholar 

  184. Torsvik, T. H., Burke, K., Steinberger, B., Webb, S. J. & Ashwal, L. D. Diamonds sampled by plumes from the core–mantle boundary. Nature 466, 352–355 (2010).

    Article  Google Scholar 

  185. Husson, L., Brun, J.-P., Yamato, P. & Faccenna, C. Episodic slab rollback fosters HP-UHP rocks exhumation. Geophys. J. Int. 179, 1292–1300 (2009).

    Article  Google Scholar 

  186. Cawood, P. A. et al. Geological archive of the onset of plate tectonics. Philos. Trans. R. Soc. A 376, 20170405 (2018).

    Article  Google Scholar 

  187. Fuentes, J. J., Crowley, J. W., Dasgupta, R. & Mitrovica, J. X. The influence of plate tectonic style on melt production and CO2 outgassing flux at mid-ocean ridges. Earth Planet. Sci. Lett. 511, 154–163 (2019).

    Article  Google Scholar 

  188. Palin, R. M. et al. Secular change and the onset of plate tectonics on Earth. Earth Sci. Rev. 207, 103172 (2020).

    Article  Google Scholar 

  189. Friend, C. R. L., Bennett, V. C. & Nutman, A. P. Abyssal peridotites >3,800 Ma from southern West Greenland: field relationships, petrography, geochronology, whole-rock and mineral chemistry of dunite and harzburgite inclusions in the Itsaq Gneiss Complex. Contrib. Mineral. Petrol. 143, 71–92 (2002).

    Article  Google Scholar 

  190. Rollinson, H. Recognising early Archaean mantle: a reappraisal. Contrib. Mineral. Petrol. 154, 241–252 (2007).

    Article  Google Scholar 

  191. Harrison, T. M., Schmitt, A. K., McCulloch, M. T. & Lovera, O. M. Early (≥4.5 Ga) formation of terrestrial crust: Lu-Hf, δ18O, and Ti thermometry results for Hadean zircons. Earth Planet. Sci. Lett. 268, 476–486 (2008).

    Article  Google Scholar 

  192. Smart, K. A. et al. Tectonic significance and redox state of Paleoproterozoic eclogite and pyroxenite components in the Slave cratonic mantle lithosphere, Voyageur kimberlite, Arctic Canada. Chem. Geol. 455, 98–119 (2017).

    Article  Google Scholar 

  193. Stern, R. J. The evolution of plate tectonics. Philos. Trans. R. Soc. A 376, 20170406 (2018).

    Article  Google Scholar 

  194. Smit, K. V., Shirey, S. B., Hauri, E. H. & Stern, R. A. Sulfur isotopes in diamonds reveal differences in continent construction. Science 364, 383–385 (2019).

    Article  Google Scholar 

  195. Furnes, H., Dilek, Y. & de Wit, M. Precambrian greenstone sequences represent different ophiolite types. Gondwana Res. 27, 649–685 (2015).

    Article  Google Scholar 

  196. Furnes, H., de Wit, M. & Dilek, Y. Four billion years of ophiolites reveal secular trends in oceanic crust formation. Geosci. Front. 5, 571–603 (2014).

    Article  Google Scholar 

  197. Guo, G. L. et al. Implications of unusual minerals in Zedang mantle peridotite, Tibet. Geol. China 42, 1483–1492 (2015).

    Google Scholar 

  198. Xu, X. et al. Diamonds and other exotic minerals discovered from the **gaze mantle peridotite in the Yarlung-Zangbo suture zone, Tibet. Acta Geol. Sin. 92, 1389–1400 (2018).

    Google Scholar 

  199. Yang, J. S. et al. Diamonds recovered from peridotite of the Purang ophiolite in the Yarlung-Zangbo suture of Tibet: a proposal for a new type of diamond occurrence. Acta Petrol. Sin. 27, 3171–3178 (2011).

    Google Scholar 

  200. Xu, X. et al. Diamond discovered from the Dongbo mantle peridotite in the Yarlung Zangbo suture zone, Tibet. Geol. China 42, 1471–1482 (2015).

    Google Scholar 

  201. **ong, F. et al. Diamonds and other exotic minerals recovered from peridotites of the Dangqiong ophiolite, western Yarlung-Zangbo suture zone, Tibet. Acta Geol. Sin. 90, 425–439 (2016).

    Article  Google Scholar 

  202. **ong, F., Yang, J., Dilek, Y., Xu, X. & Zhang, Z. Origin and significance of diamonds and other exotic minerals in the Dingqing ophiolite peridotites, eastern Bangong-Nujiang suture zone, Tibet. Lithosphere 10, 142–155 (2017).

    Google Scholar 

  203. Wu, W. et al. Discovery and significance of diamonds and moissanites in chromitite within the Skenderbeu massif of the Mirdita zone ophiolite, west Albania. Acta Geol. Sin. 91, 882–897 (2017).

    Article  Google Scholar 

  204. **ong, F. et al. Diamonds discovered from high-Cr podiform chromitites of Bulqiza, eastern Mirdita ophiolite, Albania. Acta Geol. Sin. 91, 455–468 (2017).

    Article  Google Scholar 

  205. Huang, Z. et al. The discovery of diamonds and deep mantle minerals in chromitites of Hegenshan ophiolite, Inner Mongolia. Geol. China 42, 1493–1514 (2015).

    Google Scholar 

  206. Tian, Y. et al. Discovery and implication of unusual mineral group from Sarthay high-Al chromitites, **njiang. Acta Petrol. Sin. 31, 3650–3662 (2015).

    Google Scholar 

  207. Batanova, V. G. et al. Platinum-group element abundances and Os isotope composition of mantle peridotites from the Mamonia complex, Cyprus. Chem. Geol. 248, 195–212 (2008).

    Article  Google Scholar 

  208. Merlini, A., Grieco, G., Ottolini, L. & Diella, V. Probe and SIMS investigation of clinopyroxene inclusions in chromites from the Troodos chromitites (Cyprus): implications for dunite–chromitite genesis. Ore Geol. Rev. 41, 22–34 (2011).

    Article  Google Scholar 

  209. Monnier, C., Girardeau, J., Le Mée, L. & Polvé, M. Along-ridge petrological segmentation of the mantle in the Oman ophiolite. Geochem. Geophys. Geosyst. 7, Q11008 (2006).

    Article  Google Scholar 

  210. Hanghøj, K., Kelemen, P. B., Hassler, D. & Godard, M. Composition and genesis of depleted mantle peridotites from the Wadi Tayin massif, Oman ophiolite: major and trace element geochemistry, and Os isotope and PGE systematics. J. Petrol. 51, 201–227 (2010).

    Article  Google Scholar 

  211. Khedr, M. Z., Arai, S., Python, M. & Tamura, A. Chemical variations of abyssal peridotites in the central Oman ophiolite: evidence of oceanic mantle heterogeneity. Gondwana Res. 25, 1242–1262 (2014).

    Article  Google Scholar 

  212. van Heerden, L. A., Boyd, S. B., Milledge, J. H. & Pillinger, C. T. The carbon and nitrogen-isotope characteristics of the Argyle and Ellendale diamonds, western Australia. Int. Geol. Rev. 37, 39–50 (1995).

    Article  Google Scholar 

  213. Cartigny, P., Boyd, S. B., Harris, J. W. & Javoy, M. Nitrogen isotopes in peridotitic diamonds from Fuxian, China: the mantle signature. Terra Nova 9, 175–179 (1997).

    Article  Google Scholar 

  214. Cartigny, P., Chinn, I., Viljoen, K. S. & Robinson, D. Early Proterozoic ultrahigh pressure metamorphism: evidence from microdiamonds. Science 304, 853–855 (2004).

    Article  Google Scholar 

  215. Cartigny, P., Harris, J. W. & Javoy, M. Eclogitic diamond formation at Jwaneng: no room for a recycled component. Science 280, 1421–1424 (1998).

    Article  Google Scholar 

  216. Shelkov, D. A. N and C Isotropic Composition of Different Varieties of Terrestrial Diamonds and Carbonado. PhD thesis, The Open University (1997).

  217. Gautheron, C., Cartigny, P., Moreira, M., Harris, J. W. & Allègre, C. J. Evidence for a mantle component shown by rare gases, C and N isotopes in polycrystalline diamonds from Orapa (Botswana). Earth Planet. Sci. Lett. 240, 559–572 (2005).

    Article  Google Scholar 

  218. Mikhail, S., Dobosi, G., Verchovsky, A. B., Kurat, G. & Jones, A. P. Peridotitic and websteritic diamondites provide new information regarding mantle melting and metasomatism induced through the subduction of crustal volatiles. Geochim. Cosmochim. Acta 107, 1–11 (2013).

    Article  Google Scholar 

  219. Thomazo, C. et al. Biological activity and the Earth’s surface evolution: insights from carbon, sulfur, nitrogen and iron stable isotopes in the rock record. C. R. Palevol 8, 665–678 (2009).

    Article  Google Scholar 

  220. Thomazo, C., Ader, M. & Philippot, P. Extreme 15N-enrichments in 2.72-Gyr-old sediments: evidence for a turning point in the nitrogen cycle. Geobiology 9, 107–120 (2011).

    Article  Google Scholar 

  221. Tschauner, O. et al. Ice-VII inclusions in diamonds: evidence for aqueous fluid in Earth’s deep mantle. Science 359, 1136–1139 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Julian Pearce and Paul T. Robinson for their valuable discussions and edits, which have significantly improved this manuscript. The authors thank Shengbiao Yang for his contribution in the data collection and figure preparation. This research was supported by the National Natural Science Foundation of China (41720104009, 41802055, 41802034, 91955203), the Natural Science Foundation of Jiangsu Province (BK20180349), the fund from the Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources (J1901-16), Fundamental Research Funds for the Central Universities (XJ2020003001) and IGCP-649 (IUGS-UNESCO).

Author information

Authors and Affiliations

Authors

Contributions

J.Y., W.W. and D.L. substantially contributed to the discussion of content. All authors wrote, reviewed and edited the article before submission.

Corresponding authors

Correspondence to **gsui Yang or Dongyang Lian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Earth & Environment thanks Shoji Arai and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Peridotites

A group of ultramafic rocks composed of more than 40 vol.% olivine with variable amounts of other minerals; includes lherzolite, harzburgite, dunite and wehrlite.

Suprasubduction zone

Where new oceanic crust is formed in the forearc, interarc or backarc basin of a subduction zone setting.

Podiform chromitites

Lenticular, pod-like, layered or banded chromite-rich autoliths in harzburgites and/or dunites of ophiolite complexes.

Abyssal peridotites

Ultramafic rocks collected from the modern mid-ocean ridges by dredging or drilling the ocean floor.

Forearc peridotites

Ultramafic rocks collected by dredging or drilling the forearc of modern subduction zones.

Monogenetic

Resulting from one process of formation, derived from one source or developed at one place and time.

Polygenetic

Resulting from more than one process of formation, derived from more than one source or developed at various places and times.

Boninitic

High-MgO and high-SiO2 melts believed to react with host harzburgite to form high-Cr-type (Cr# > 60) podiform chromitites in suprasubduction zones.

Tholeiitic

High-Al2O3–low-SiO2 melts believed to react with host harzburgite to form high-Al-type (Cr# < 60) podiform chromitites in oceanic spreading centres.

Subduction zone initiation

When the oceanic lithosphere descends into the mantle beneath another tectonic plate to form a new subduction zone.

Harzburgite

A variety of peridotite consisting of olivine (40–90 vol.%), orthopyroxene (>5 vol.%) and clinopyroxene (<5 vol.%), and commonly contains minor spinel as an accessory mineral.

Lherzolite

A variety of peridotite composed of olivine (40–90 vol.%), orthopyroxene (>5 vol.%), clinopyroxene (>5 vol.%) and accessory minerals (such as plagioclase, spinel and garnet).

Dunite

A variety of peridotite consisting mostly of olivine (>90 vol.%), with minor amounts of other minerals, such as pyroxene and chromite.

Mantle transition zone

The layer between the two mantle discontinuities observed from seismic wave speeds that lie at depths of approximately 410 km and 660 km.

Coesite

A high-pressure polymorph of silicon dioxide (SiO2), which can be found in meteorite impact craters or in ultra-high-pressure metamorphic rocks.

Crystallographic preferred orientation

The alignment of crystallographic axes of crystals in a deformed rock body, where the c-axis of most grains are parallel to a particular direction or to a limited range of directions.

Orogenic belts

Tectonic expression of convergent margins and plate boundaries, usually involved in the formation of mountains.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Wu, W., Lian, D. et al. Peridotites, chromitites and diamonds in ophiolites. Nat Rev Earth Environ 2, 198–212 (2021). https://doi.org/10.1038/s43017-020-00138-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-020-00138-4

  • Springer Nature Limited

This article is cited by

Navigation