Log in

Subduction-zone peridotites and their records of crust-mantle interaction

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Subduction is the core process of plate tectonics. The mantle wedge in subduction-zone systems represents a key tectonic unit, playing a significant role in material cycling and energy exchange between Earth’s layers. This study summarizes research progresses in terms of subduction-related peridotite massifs, including supra-subduction zone (SSZ) ophiolites and mantle-wedge-type (MWT) orogenic peridotites. We also provide the relevant key scientific questions that need be solved in the future. The mantle sections of SSZ ophiolites and MWT orogenic peridotites represent the mantle fragments from oceanic and continental lithosphere in subduction zones, respectively. They are essential targets to study the crust-mantle interaction in subduction zones. The nature of this interaction is the complex chemical exchanges between the subducting slab and the mantle wedge under the major control of physical processes. The SSZ ophiolites can record melt/fluid-rock interaction, metamorphism, deformation, concentration of metallogenic elements and material exchange between crust and mantle, during the stages from the generation of oceanic lithosphere at spreading centers to the initiation, development, maturation and ending of oceanic subduction at continental margins. The MWT orogenic peridotites reveal the history of strong metamorphism and deformation during subduction, the multiple melt/fluid metasomatism (including silicatic melts, carbonatitic melts and silicate-bearing C-HO fluids/supercritical fluids), and the complex cycling of crust-mantle materials, during the subduction/collision and exhumation of continental plates. In order to further reveal the crust-mantle interaction using subduction-zone peridotites, it is necessary to utilize high-spatial-resolution and high-precision techniques to constrain the complex chemical metasomatism, metamorphism, deformation at micro scales, and to reveal their connections with spatial-temporal evolution in macro-scale tectonics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abelson M, Baer G, Agnon A. 2001. Evidence from gabbro of the Troodos ophiolite for lateral magma transport along a slow-spreading mid-ocean ridge. Nature, 409: 72–75

    Google Scholar 

  • Anonymous. 1972. Penrose field conference on ophiolites. Geotimes, 17: 24–25

    Google Scholar 

  • Bailey E H, Blake M C, Jones D L. 1970. On-land Mesozoic oceanic crust in California Coast Ranges. Geol Survey Res, U.S. Geol Survey Prof Paper, 700: 70–81

    Google Scholar 

  • Batanova V G, Sobolev A V. 2000. Compositional heterogeneity in subduction-related mantle peridotites, Troodos massif, Cyprus. Geology, 28: 55–58

    Google Scholar 

  • Bebout G E. 2007. Metamorphic chemical geodynamics of subduction zones. Earth Planet Sci Lett, 260: 373–393

    Google Scholar 

  • Bebout G E. 2014. Chemical and isotopic cycling in subduction zones. In: Holland H D, Turekian K K, eds. Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier. 703–747

    Google Scholar 

  • Behn M D, Kelemen P B, Hirth G, Hacker B R, Massonne H J. 2011. Diapirs as the source of the sediment signature in arc lavas. Nat Geosci, 4: 641–646

    Google Scholar 

  • Bodinier J L, Godard M. 2014. Orogenic, ophiolitic, and abyssal peridotites. In: Holland H D, Turekian K K, eds. Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier. 103–167

  • Braga R, Bargossi G M. 2014. Crust-mantle relationships close at hands. Walking through the Ulten-Nonsberg orogenic lower crust. Geol Field Trips Società Geol Italiana, 6: 1–46

    Google Scholar 

  • Brongniart A. 1813. Essai de classify cation minéralogique des roches mélanges. J des Mines, 34: 190–199

    Google Scholar 

  • Brueckner H K, Carswell D A, Griffin W L. 2002. Paleozoic diamonds within a Precambrian peridotite lens in UHP gneisses of the Norwegian Caledonides. Earth Planet Sci Lett, 203: 805–816

    Google Scholar 

  • Campione M, Tumiati S, Malaspina N. 2017. Primary spinel+chlorite inclusions in mantle garnet formed at ultrahigh-pressure. Geochem Persp Lett, 4: 19–23

    Google Scholar 

  • Cao Y, Jung H, Song S, Park M, Jung S, Lee J. 2015. Plastic deformation and seismic properties in fore-arc mantles: A petrofabric analysis of the Yushigou harzburgites, North Qilian suture zone, NW China. J Petrol, 56: 1897–1944

    Google Scholar 

  • Cao Y, Song S, Su L, Jung H, Niu Y. 2016. Highly refractory peridotites in Songshugou, Qinling orogen: Insights into partial melting and melt/fluid-rock reactions in forearc mantle. Lithos, 252–253: 234–254

    Google Scholar 

  • Cao Y, Jung H, Song S. 2017. Olivine fabrics and tectonic evolution of fore-arc mantles: A natural perspective from the Songshugou dunite and harzburgite in the Qinling orogenic belt, central China. Geochem Geophys Geosyst, 18: 907–934

    Google Scholar 

  • Carswell D A. 1983. The petrogenesis of contrasting Fe-Ti and Mg-Cr garnet-peridotite types in the high grade gneiss complex of western Norway. Bull Mineral, 106: 727–750

    Google Scholar 

  • Carswell D A, van Roermund H L M. 2005. On multi-phase mineral inclusions associated with microdiamond formation in mantle-derived peridotite lens at Bardane on Fjørtoft, west Norway. Eur J Mineral, 17: 31–42

    Google Scholar 

  • Chan G H N, Aitchison J C, Crowley Q G, Horstwood M S A, Searle M P, Parrish R R, Chan J S L. 2015. U-Pb zircon ages for Yarlung Tsangpo suture zone ophiolites, southwestern Tibet and their tectonic implications. Gondwana Res, 27: 719–732

    Google Scholar 

  • Chen R X, Li H Y, Zheng Y F, Zhang L, Gong B, Hu Z, Yang Y. 2017. Crust-mantle interaction in a continental subduction channel: Evidence from orogenic peridotites in North Qaidam, Northern Tibet. J Petrol, 58: 191–226

    Google Scholar 

  • Chen S Z, Yang J S, Li T F. 2009. Petrological investigation of the Ganyu peridotite in the Sulu ultrahigh-pressure terrane, eastern China. Tectonophysics, 475: 383–395

    Google Scholar 

  • Chen Y, Ye K, Guo S, Wu T F, Liu J B. 2013a. Multistage metamorphism of garnet orthopyroxenites from the Maowu mafic-ultramafic complex, Dabieshan UHP terrane, eastern China. Int Geol Rev, 55: 1239–1260

    Google Scholar 

  • Chen Y, Ye K, Wu Y W, Guo S, Su B, Liu J B. 2013b. Hydration and dehydration in the lower margin of a cold mantle wedge: Implications for crust-mantle interactions and petrogeneses of arc magmas. Int Geol Rev, 55: 1506–1522

    Google Scholar 

  • Chen Y, Su B, Guo S. 2015. The Dabie-Sulu orogenic peridotites: Progress and key issues. Sci China Earth Sci, 58: 1679–1699

    Google Scholar 

  • Chen Y, Su B, Chu Z Y. 2017. Modification of an ancient subcontinental lithospheric mantle by continental subduction: Insight from the Maowu garnet peridotites in the Dabie UHP belt, eastern China. Lithos, 278–281: 54–71

    Google Scholar 

  • Chopin C. 2003. Ultrahigh-pressure metamorphism: Tracing continental crust into the mantle. Earth Planet Sci Lett, 212: 1–14

    Google Scholar 

  • Cluzel D, Aitchison J C, Picard C. 2001. Tectonic accretion and underplating of mafic terranes in the Late Eocene intraoceanic fore-arc of New Caledonia (Southwest Pacific): Geodynamic implications. Tectonophysics, 340: 23–59

    Google Scholar 

  • Cluzel D, Ulrich M, Jourdan F, Meffre S, Paquette J L, Audet M A, Secchiari A, Maurizot P. 2016. Early Eocene clinoenstatite boninite and boninite-series dikes of the ophiolite of New Caledonia; a witness of slab-derived enrichment of the mantle wedge in a nascent volcanic arc. Lithos, 260: 429–442

    Google Scholar 

  • Coltorti M, Bonadiman C, Hinton R W, Siena F, Upton B G J. 1999. Carbonatite metasomatism of the oceanic upper mantle: Evidence from clinopyroxenes and glasses in ultramafic xenoliths of grande comore, indian ocean. Acta Math Hung, 134: 269–285

    Google Scholar 

  • Dilek Y. 2003. Ophiolite concept and its evolution. In: Dilek Y, Newcomb S, eds. Ophiolite Concept and the Evolution of Geological Thought. Geol Soc Am, 373: 1–16

    Google Scholar 

  • Dilek Y, Furnes H. 2009. Structure and geochemistry of tethyan ophiolites and their petrogenesis in subduction rollback systems. Lithos, 113: 1–20

    Google Scholar 

  • Dilek Y, Furnes H. 2011. Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geol Soc Am Bull, 123: 387–411

    Google Scholar 

  • Ernst W G, Liou J G. 2008. High-and ultrahigh-pressure metamorphism: Past results and future prospects. Am Miner, 93: 1771–1786

    Google Scholar 

  • Ferrando S, Frezzotti M L, Dallai L, Compagnoni R. 2005. Multiphase solid inclusions in UHP rocks (Su-Lu, China): Remnants of supercritical silicate-rich aqueous fluids released during continental subduction. Chem Geol, 223: 68–81

    Google Scholar 

  • Frezzotti M L, Ferrando S. 2015. The chemical behavior of fluids released during deep subduction based on fluid inclusions. Am Miner, 100: 352–377

    Google Scholar 

  • Fu B, Touret J L R, Zheng Y F. 2001. Fluid inclusions in coesite-bearing eclogites and jadeite quartzite at Shuanghe, Dabie Shan (China). J Metamorph Geol, 19: 531–547

    Google Scholar 

  • Gao J, John T, Klemd R, **ong X. 2007. Mobilization of Ti-Nb-Ta during subduction: Evidence from rutile-bearing dehydration segregations and veins hosted in eclogite, Tianshan, NW China. Geochim Cosmochim Acta, 71: 4974–4996

    Google Scholar 

  • Gao T S, Chen J F, **e Z. 2015. Petrology and geochemistry of ultramafic rocks at Hujialin, Sulu Orogen (in Chinese with English abstract). Bull Mineral Petrol Geochem, 34: 601–618

    Google Scholar 

  • Gao X Y, Zheng Y F, Chen Y X. 2012. Dehydration melting of ultrahighpressure eclogite in the Dabie orogen: Evidence from multiphase solid inclusions in garnet. J Metamorph Geol, 30: 193–212

    Google Scholar 

  • Gass I G. 1968. Is the Troodos massif of Cyprus a fragment of Mesozoic ocean floor? Nature, 220: 39–42

    Google Scholar 

  • Gerya T V, Stöckhert B, Perchuk A L. 2002. Exhumation of high-pressure metamorphic rocks in a subduction channel: A numerical simulation. Tectonics, 21: 6-1–6-19

    Google Scholar 

  • González-Jiménez J M, Griffin W L, Proenza J A, Gervilla F, O’Reilly S Y, Akbulut M, Pearson N J, Arai S. 2014. Chromitites in ophiolites: How, where, when, why? Part II. The crystallization of chromitites. Lithos, 189: 140–158

    Google Scholar 

  • Guillot S, Hattori K, Agard P, Schwartz S, Vidal O. 2009. Exhumation processes in oceanic and continental subduction contexts: A review. In: Lallemand S, Funiciello F, eds. Subduction Zone Geodynamics. Frontiers in Earth Sciences. Heidelberg: Springer. 175–205

  • Guo S, Tang P, Su B, Chen Y, Ye K, Zhang L G, Gao Y J, Liu J B, Yang Y H. 2017. Unusual replacement of Fe-Ti oxides by rutile during retrogression in amphibolite-hosted veins (Dabie UHP terrane): A mineralogical record of fluid-induced oxidation processes in exhumed UHP slabs. Am Miner, 102: 2268–2283

    Google Scholar 

  • Hébert R, Bézard R, Guilmette C, Dostal J, Wang C S, Liu Z F. 2012. The Indus-Yarlung Zangbo ophiolites from Nanga Parbat to Namche Barwa syntaxes, southern Tibet: First synthesis of petrology, geochemistry, and geochronology with incidences on geodynamic reconstructions of Neo-Tethys. Gondwana Res, 22: 377–397

    Google Scholar 

  • Hermann J, Rubatto D. 2014. Subduction of continental crust to mantle depths: Geochemistry of ultrahigh-pressure rocks. In: Holland H D, Turekian K K, eds. Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier. 309–339

  • Hermann J, Spandler C J. 2008. Sediment melts at sub-arc depths: An experimental study. J Petrol, 49: 717–740

    Google Scholar 

  • Hermann J, Zheng Y F, Rubatto D. 2013. Deep fluids in subducted continental crust. Elements, 9: 281–287

    Google Scholar 

  • Hiramatsu N, Banno S, Hirajima T, Cong B. 1995. Ultrahigh-pressure garnet lherzolite from Chijiadian, Rongcheng County, in the Su-Lu region of eastern China. Isl Arc, 4: 324–333

    Google Scholar 

  • Hiramatsu N, Hirajima T. 1995. Petrology of the Hujialin garnet clinopyroxenite in the Su-Lu ultrahigh-pressure province, eastern China. Isl Arc, 4: 310–323

    Google Scholar 

  • Hofmann A W. 1997. Mantle geochemistry: The message from oceanic volcanism. Nature, 385: 219–229

    Google Scholar 

  • Hwang S L, Shen P, Chu H T, Yui T F, Lin C C. 2001. Genesis of microdiamonds from melt and associated multiphase inclusions in garnet of ultrahigh-pressure gneiss from Erzgebirge, Germany. Earth Planet Sci Lett, 188: 9–15

    Google Scholar 

  • Hyndman R D, Peacock S M. 2003. Serpentinization of the forearc mantle. Earth Planet Sci Lett, 212: 417–432

    Google Scholar 

  • Ionov D A, Bigot F, Braga R. 2017. The provenance of the lithospheric mantle in continental collision zones: Petrology and geochemistry of peridotites in the Ulten-Nonsberg Zone (Eastern Alps). J Petrol, 58: 1451–1472

    Google Scholar 

  • Jahn B, Fan Q, Yang J J, Henin O. 2003. Petrogenesis of the Maowu pyroxenite-eclogite body from the UHP metamorphic terrane of Dabieshan: Chemical and isotopic constraints. Lithos, 70: 243–267

    Google Scholar 

  • Kessel R, Schmidt M W, Ulmer P, Pettke T. 2005. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature, 437: 724–727

    Google Scholar 

  • John T, Gussone N, Podladchikov Y Y, Bebout G E, Dohmen R, Halama R, Klemd R, Magna T, Seitz H M. 2012. Volcanic arcs fed by rapid pulsed fluid flow through subducting slabs. Nat Geosci, 5: 489–492

    Google Scholar 

  • Kelemen P B, Dick H J B. 1995. Focused melt flow and localized deformation in the upper mantle: Juxtaposition of replacive dunite and ductile shear zones in the Josephine peridotite, SW Oregon. J Geophys Res, 100: 423–438

    Google Scholar 

  • Kelemen P B, Hanghoj K, Greene A R. 2014. One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. In: Holland H D, Turekian K K, eds. Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier. 749–805

    Google Scholar 

  • Konrad-Schmolke M, O’Brien P J, Zack T. 2011. Fluid migration above a subducted slab-constraints on amount, pathways and major element mobility from partially overprinted eclogite-facies rocks (Sesia Zone, Western Alps). J Petrol, 52: 457–486

    Google Scholar 

  • Lee C T A, Cheng X, Horodyskyj U. 2006. The development and refinement of continental arcs by primary basaltic magmatism, garnet pyroxenite accumulation, basaltic recharge and delamination: Insights from the Sierra Nevada, California. Contrib Mineral Petrol, 151: 222–242

    Google Scholar 

  • Li J L, John T, Gao J, Klemd R, Wang X S. 2017. Subduction channel fluid-rock interaction and mass transfer: Constraints from a retrograde vein in blueschist (SW Tianshan, China). Chem Geol, 456: 28–42

    Google Scholar 

  • Li Z Y, Zheng J P, Moskowitz B M, Liu Q S, **ong Q, Yang J S, Hu X Y. 2017. Magnetic properties of serpentinized peridotites from the Dongbo ophiolite, SW Tibet: Implications for suture-zone magnetic anomalies. J Geophys Res-Solid Earth, 122: 4814–4830

    Google Scholar 

  • Li H Y, Chen R X, Zheng Y F, Hu Z, Xu L. 2018a. Crustal metasomatism at the slab-mantle interface in a continental subduction channel: Geochemical evidence from orogenic peridotite in the Sulu orogen. J Geophys Res-Solid Earth, 123: 2174–2198

    Google Scholar 

  • Li H Y, Chen R X, Zheng Y F, Hu Z. 2018b. Water in garnet pyroxenite from the Sulu orogen: Implications for crust-mantle interaction in continental subduction zone. Chem Geol, 478: 18–38

    Google Scholar 

  • Liou J G, Ernst W G, Zhang R Y, Tsujimori T, Jahn B M. 2009. Ultrahighpressure minerals and metamorphic terranes—The view from China. J Asian Earth Sci, 35: 199–231

    Google Scholar 

  • Liou J G, Zhang R Y, Ernst W G. 2007. Very high-pressure orogenic garnet peridotites. Proc Natl Acad Sci USA, 104: 9116–9121

    Google Scholar 

  • Liu L, Sun Y, **ao P X, Chen Z C, Luo J H, Chen D L, Wang Y, Zhang A D, Chen L. 2002. Ultra-high (>3.8 GPa) garnet lherzolite discovered in the Altyn Orogen (in Chinese with English abstract). Chin Sci Bull, 47: 657–662

    Google Scholar 

  • Liu Q S, Zeng Q L, Zheng J P, Yang T, Qiu N, Liu Z, Luo Y H, ** Z M. 2010. Magnetic properties of serpentinized garnet peridotites from the CCSD main hole in the Sulu ultrahigh-pressure metamorphic belt, eastern China. J Geophys Res, 115: B06104

    Google Scholar 

  • Liu Q S, Qiu N, Zheng J P, Li Z Y, Wang H C. 2015. Crustal large-scale serpentinized mantle peridotite body in the Sulu ultrahigh-pressure metamorphic belt, eastern China: Evidence from gravity and magnetic anomalies. J Struct Geol, 70: 190–199

    Google Scholar 

  • McDonough W F, Sun S S. 1995. The composition of the Earth. Chem Geol, 120: 223–253

    Google Scholar 

  • Malaspina N, Hermann J, Scambelluri M, Compagnoni R. 2006. Polyphase inclusions in garnet-orthopyroxenite (Dabie Shan, China) as monitors for metasomatism and fluid-related trace element transfer in subduction zone peridotite. Earth Planet Sci Lett, 249: 173–187

    Google Scholar 

  • Malaspina N, Hermann J, Scambelluri M. 2009a. Fluid/mineral interaction in UHP garnet peridotite. Lithos, 107: 38–52

    Google Scholar 

  • Malaspina N, Poli S, Fumagalli P. 2009b. The oxidation state of metasomatized mantle wedge: Insights from C-O-H-bearing garnet peridotite. J Petrol, 50: 1533–1552

    Google Scholar 

  • Malaspina N, Scambelluri M, Poli S, Van Roermund H L M, Langenhorst F. 2010. The oxidation state of mantle wedge majoritic garnet websterites metasomatised by C-bearing subduction fluids. Earth Planet Sci Lett, 298: 417–426

    Google Scholar 

  • Malaspina N, Langenhorst F, Fumagalli P, Tumiati S, Poli S. 2012. Fe3+ distribution between garnet and pyroxenes in mantle wedge carbonatebearing garnet peridotites (Sulu, China) and implications for their oxidation state. Lithos, 146–147: 11–17

    Google Scholar 

  • Malaspina N, Alvaro M, Campione M, Wilhelm H, Nestola F. 2015. Dynamics of mineral crystallization from precipitated slab-derived fluid phase: First in situ synchrotron X-ray measurements. Contrib Mineral Petrol, 169: 26

    Google Scholar 

  • Malaspina N, Langenhorst F, Tumiati S, Campione M, Frezzotti M L, Poli S. 2017. The redox budget of crust-derived fluid phases at the slabmantle interface. Geochim Cosmochim Acta, 209: 70–84

    Google Scholar 

  • Manning C E. 2004. The chemistry of subduction-zone fluids. Earth Planet Sci Lett, 223: 1–16

    Google Scholar 

  • Marchesi C, Garrido C J, Godard M, Belley F, Ferré E. 2009. Migration and accumulation of ultra-depleted subduction-related melts in the massif du sud ophiolite (New Caledonia). Chem Geol, 266: 171–186

    Google Scholar 

  • Marocchi M, Hermann J, Morten L. 2007. Evidence for multi-stage metasomatism of chlorite-amphibole peridotites (Ulten Zone, Italy): Constraints from trace element compositions of hydrous phases. Lithos, 99: 85–104

    Google Scholar 

  • Marocchi M, Hermann J, Tropper P, Bargossi G M, Mair V. 2010. Amphibole and phlogopite in “hybrid” metasomatic bands monitor trace element transfer at the interface between felsic and ultramafic rocks (Eastern Alps, Italy). Lithos, 117: 135–148

    Google Scholar 

  • Marschall H R, Schumacher J C. 2012. Arc magmas sourced from mélange diapirs in subduction zones. Nat Geosci, 5: 862–867

    Google Scholar 

  • Mibe K, Kawamoto T, Matsukage K N, Fei Y, Ono S. 2011. Slab melting versus slab dehydration in subduction-zone magmatism. Proc Nat Acad Sci USA, 108: 8177–8182

    Google Scholar 

  • Miyashiro A. 1973. Metamorphism and Metamorphic Belts. Lond George Allen Unwin. 492

  • Moores E M, Jackson E D. 1974. Ophiolites and oceanic crust. Nature, 250: 136–139

    Google Scholar 

  • Moores E M, Kellogg L H, Dilek Y. 2000. Tethyan ophiolites, mantle convection and tectonic “historical contingency”: A resolution of the “ophiolite conundrum”. In: Dilek Y, Moores E M, Elthon D, Nicolas A, eds. Ophiolites and Ocean Crust: New Insights from Field Studies and the Ocean Drilling Program. Boulder: Geological Society of America Special Paper 349. 3–12

  • Morris A, Maffione M. 2016. Is the Troodos ophiolite (Cyprus) a complete, transform fault-bounded Neotethyan ridge segment? Geology, 44: 199–202

    Google Scholar 

  • Ni H W, Zheng Y F, Mao Z, Wang Q, Chen R X, Zhang L. 2017. Distribution, cycling and impact of water in the Earth’s interior. Natl Sci Rev, 4: 879–891

    Google Scholar 

  • Nie H, Yang J, Zhou G, Liu C, Zheng J, Zhang W X, Zhao Y J, Wang H, Wu Y B. 2017. Geochemical and Re-Os isotope constraints on the origin and age of the Songshugou peridotite massif in the Qinling orogen, central China. Lithos, 292–293: 307–319

    Google Scholar 

  • Nimis P, Morten L. 2000. P-T evolution of ‘crustal’ garnet peridotites and included pyroxenites from Nonsberg area (upper Austroalpine), NE Italy: From the wedge to the slab. J Geodyn, 30: 93–115

    Google Scholar 

  • Nuriel P, Katzir Y, Abelson M, Valley J W, Matthews A, Spicuzza M J, Ayalon A. 2009. Fault-related oceanic serpentinization in the Troodos ophiolite, Cyprus: Implications for a fossil oceanic core complex. Earth Planet Sci Lett, 282: 34–46

    Google Scholar 

  • O’Reilly S Y, Griffin W L. 2013. Mantle metsomatism. In: Harlov D E, Austrheim H, eds. Metasomatism and the Chemical Transformation of Rock, Lecture Notes in Earth System Sciences. Heidelberg: Springer-Verlag. 471–533

  • Pagé P, Bédard J H, Schroetter J M, Tremblay A. 2008. Mantle petrology and mineralogy of the Thetford Mines ophiolite complex. Lithos, 100: 255–292

    Google Scholar 

  • Pagé P, Bédard J H, Tremblay A. 2009. Geochemical variations in a depleted fore-arc mantle: The Ordovician Thetford Mines ophiolite. Lithos, 113: 21–47

    Google Scholar 

  • Pagé P, Barnes S J. 2009. Using trace elements in chromites to constrain the origin of podiform chromitites in the Thetford Mines ophiolite, Quebec, Canada. Econ Geol, 104: 997–1018

    Google Scholar 

  • Pearce J A, Lippard S J, Roberts S. 1984. Characteristics and tectonic significance of supra-subduction zone ophiolites. Geol Soc Lond Spec Publ, 16: 77–94

    Google Scholar 

  • Pearce J A, Robinson P T. 2010. The Troodos ophiolitic complex probably formed in a subduction initiation, slab edge setting. Gondwana Res, 18: 60–81

    Google Scholar 

  • Philippot P, Selverstone J. 1991. Trace-element-rich brines in eclogitic veins: Implications for fluid composition and transport during subduction. Contr Mineral Petrol, 106: 417–430

    Google Scholar 

  • Pirard C, Hermann J, O’Neill H S C. 2013. Petrology and geochemistry of the crust-mantle boundary in a nascent arc, Massif du Sud ophiolite, New Caledonia, SW Pacific. J Petrol, 54: 1759–1792

    Google Scholar 

  • Rampone E, Morten L. 2001. Records of crustal metasomatism in the garnet peridotites of the Ulten Zone (Upper Austroalpine, Eastern Alps). J Petrol, 42: 207–219

    Google Scholar 

  • Ren Y F, Yang J S, Zhang Z M, Li T F. 2007. Study of the Macaokuang peridotite body from the PP6 Drill Hole of the Chinese Continental Scientific Drilling (CCSD) Project (in Chinese with English abstract). Acta Geol Sin, 81: 1004–1016

    Google Scholar 

  • Richards J P. 2013. Giant ore deposits formed by optimal alignments and combinations of geological processes. Nat Geosci, 6: 911–916

    Google Scholar 

  • Rielli A, Tomkins A G, Nebel O, Brugger J, Etschmann B, Zhong R, Yaxley G M, Paterson D. 2017. Evidence of sub-arc mantle oxidation by sulphur and carbon. Geochem Persp Lett, 3: 124–132

    Google Scholar 

  • Ringwood A E. 1974. The petrological evolution of island arc systems. J Geol Soc, 130: 183–204

    Google Scholar 

  • Robinson P T, Melson W G, O’Hearn T, Schmincke H U. 1983. Volcanic glass compositions of the Troodos ophiolite, Cyprus. Geology, 11: 400–404

    Google Scholar 

  • Sapienza G T, Scambelluri M, Braga R. 2009. Dolomite-bearing orogenic garnet peridotites witness fluid-mediated carbon recycling in a mantle wedge (Ulten Zone, Eastern Alps, Italy). Contrib Mineral Petrol, 158: 401–420

    Google Scholar 

  • Scambelluri M, Philippot P. 2001. Deep fluids in subduction zones. Lithos, 55: 213–227

    Google Scholar 

  • Scambelluri M, Hermann J, Morten L, Rampone E. 2006. Melt-versus fluid-induced metasomatism in spinel to garnet wedge peridotites (Ulten Zone, Eastern Italian Alps): Clues from trace element and Li abundances. Contrib Mineral Petrol, 151: 372–394

    Google Scholar 

  • Scambelluri M, Pettke T, van Roermund H L M. 2008. Majoritic garnets monitor deep subduction fluid flow and mantle dynamics. Geology, 36: 59–62

    Google Scholar 

  • Scambelluri M, van Roermund H L M, Pettke T. 2010. Mantle wedge peridotites: Fossil reservoirs of deep subduction zone processes. Lithos, 120: 186–201

    Google Scholar 

  • Scambelluri M, Pettke T, Cannaò E. 2015. Fluid-related inclusions in Alpine high-pressure peridotite reveal trace element recycling during subduction-zone dehydration of serpentinized mantle (Cima di Gagnone, Swiss Alps). Earth Planet Sci Lett, 429: 45–59

    Google Scholar 

  • Schmidt M W, Poli S. 2014. Devolatilization during subduction. In: Holland H D, Turekian K K, eds. Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier. 669–701

    Google Scholar 

  • Secchiari A, Montanini A, Bosch D, Macera P, Cluzel D. 2016. Melt extraction and enrichment processes in the New Caledonia lherzolites: Evidence from geochemical and Sr-Nd isotope data. Lithos, 260: 28–43

    Google Scholar 

  • Secchiari A, Montanini A, Bosch D, Macera P, Cluzel D. 2018. The contrasting geochemical message from the New Caledonia gabbronorites: Insights on depletion and contamination processes of the sub-arc mantle in a nascent arc setting. Contrib Mineral Petrol, 173: 66

    Google Scholar 

  • Shen A H, Keppler H. 1997. Direct observation of complete miscibility in the albite-H2O system. Nature, 385: 710–712

    Google Scholar 

  • Shi R D, Griffin W L, O’Reilly S Y, Zhao G C, Huang Q S, Li J, Xu J F. 2010. Evolution of the Lüliangshan garnet peridotites in the North Qaidam UHP belt, Northern Tibetan Plateau: Constraints from Re-Os isotopes. Lithos, 117: 307–321

    Google Scholar 

  • Shirey S B, Richardson S H. 2011. Start of the Wilson cycle at 3 Ga shown by diamonds from subcontinental mantle. Science, 333: 434–436

    Google Scholar 

  • Shreve R L, Cloos M. 1986. Dynamics of sediment subduction, melange formation, and prism accretion. J Geophys Res, 91: 10229–10245

    Google Scholar 

  • Song S G, Zhang L F, Niu Y L. 2004. Ultra-deep origin of garnet peridotite from the North Qaidam ultrahigh-pressure belt, Northern Tibetan Plateau, NW China. Am Miner, 89: 1330–1336

    Google Scholar 

  • Song S G, Zhang L F, Niu Y L, Su L, Jian P, Liu D Y. 2005a. Geochronology of diamond-bearing zircons from garnet peridotite in the North Qaidam UHPM belt, Northern Tibetan Plateau: A record of complex histories from oceanic lithosphere subduction to continental collision. Earth Planet Sci Lett, 234: 99–118

    Google Scholar 

  • Song S G, Zhang L F, Chen J, Liou J G, Niu Y L. 2005b. Sodic amphibole exsolutions in garnet from garnet-peridotite, North Qaidam UHPM belt, NW China: Implications for ultradeep-origin and hydroxyl defects in mantle garnets. Am Miner, 90: 814–820

    Google Scholar 

  • Song S G, Su L, Niu Y L, Zhang L F, Zhang G B. 2007. Petrological and geochemical constraints on the origin of garnet peridotite in the North Qaidam ultrahigh-pressure metamorphic belt, northwestern China. Lithos, 96: 243–265

    Google Scholar 

  • Song S G, Su L, Niu Y L, Lai Y, Zhang L F. 2009. CH4 inclusions in orogenic harzburgite: Evidence for reduced slab fluids and implication for redox melting in mantle wedge. Geochim Cosmochim Acta, 73: 1737–1754

    Google Scholar 

  • Soret M, Agard P, Dubacq B, Vitale-Brovarone A, Monié P, Chauvet A, Whitechurch H, Villemant B. 2016. Strain localization and fluid infiltration in the mantle wedge during subduction initiation: Evidence from the base of the New Caledonia ophiolite. Lithos, 244: 1–19

    Google Scholar 

  • Spandler C, Pirard C. 2013. Element recycling from subducting slabs to arc crust: A review. Lithos, 170–171: 208–223

    Google Scholar 

  • Steinmann G. 1927. Der ophiolitischen Zonen in der Mediterranean Kettengebirgen. Madrid: 14th International Geological Congress. 638–667

    Google Scholar 

  • Stern R J. 2002. Subduction zones. Rev Geophys, 40: 1–38

    Google Scholar 

  • Spengler D, van Roermund H L M, Drury M R, Ottolini L, Mason P R D, Davies G R. 2006. Deep origin and hot melting of an Archaean orogenic peridotite massif in Norway. Nature, 440: 913–917

    Google Scholar 

  • Su B, Chen Y, Guo S, Chu Z Y, Liu J B, Gao Y J. 2016. Carbonatitic metasomatism in orogenic dunites from Lijiatun in the Sulu UHP terrane, eastern China. Lithos, 262: 266–284

    Google Scholar 

  • Su B, Chen Y, Guo S, Liu J B. 2017. Dolomite dissociation indicates ultradeep (>150 km) subduction of a garnet-bearing dunite block (the Sulu UHP terrane). Am Miner, 102: 2295–2306

    Google Scholar 

  • Su B X, Teng F Z, Hu Y, Shi R D, Zhou M F, Zhu B, Liu F, Gong X H, Huang Q S, **ao Y, Chen C, He Y S. 2015. Iron and magnesium isotope fractionation in oceanic lithosphere and sub-arc mantle: Perspectives from ophiolites. Earth Planet Sci Lett, 430: 523–532

    Google Scholar 

  • Tang Y, Zhai Q G, Hu P Y, Wang J, **ao X C, Wang H T, Tang S H, Lei M. 2018. Rodingite from the Beila ophiolite in the Bangong-Nujiang suture zone, northern Tibet: New insights into the formation ofophio-lite-related rodingite. Lithos, 316–317: 33–47

    Google Scholar 

  • Tang Y J, Zhang H F, Ying J F, Su B X. 2013. Widespread refertilization of cratonic and circum-cratonic lithospheric mantle. Earth Sci Rev, 118: 45–68

    Google Scholar 

  • Tatsumi Y. 1989. Migration of fluid phases and genesis of basalt magmas in subduction zones. J Geophys Res, 94: 4697–4707

    Google Scholar 

  • Tatsumi Y, Kogiso T. 2003. The subduction factory: Its role in the evolution of the Earth’s crust and mantle. Geol Soc Lond Spec Publ, 219: 55–80

    Google Scholar 

  • Tumiati S, Thöni M, Nimis P, Martin S, Mair V. 2003. Mantle-crust interactions during Variscan subduction in the Eastern Alps (Nonsberg-Ulten zone): Geochronology and new petrological constraints. Earth Planet Sci Lett, 210: 509–526

    Google Scholar 

  • Ulrich M, Picard C, Guillot S, Chauvel C, Cluzel D, Meffre S. 2010. Multiple melting stages and refertilization as indicators for ridge to subduction formation: The New Caledonia ophiolite. Lithos, 115: 223–236

    Google Scholar 

  • van Roermund H. 2009a. Recent progress in Scandian ultrahigh-pressure metamorphism in the northernmost domain of the Western Gneiss Complex, SW Norway: Continental subduction down to 180–200 km depth. J Geol Soc, 166: 739–751

    Google Scholar 

  • van Roermund H. 2009b. Mantle-wedge garnet peridotites from the northernmost ultra-high pressure domain of the Western Gneiss Region, SW Norway. Eur J Mineral, 21: 1085–1096

    Google Scholar 

  • van Roermund H L M, Drury M R. 1998. Ultra-high pressure (P>6 GPa) garnet peridotites in Western Norway: Exhumation of mantle rocks from >185 km depth. Terra Nova, 10: 295–301

    Google Scholar 

  • Van Roermund H L M, Ronde D. 2000. Super-silicic garnet microstructures from an orogenic garnet peridotite, evidence for an ultra-deep (>6 GPa) origin. J Metamorph Geol, 18: 135–147

    Google Scholar 

  • van Roermund H L M, Carswell D A, Drury M R, Heijboer T C. 2002. Microdiamonds in a megacrystic garnet websterite pod from Bardane on the island of Fjørtoft, western Norway: Evidence for diamond formation in mantle rocks during deep continental subduction. Geology, 30: 959–962

    Google Scholar 

  • Vrijmoed J C, Austrheim H, John T, Hin R C, Corfu F, Davies G R. 2013. Metasomatism in the ultrahigh-pressure Scartberget garnet-peridotite (Western Gneiss Region, Norway): Implications for the transport of crust-derived fluids within the mantle. J Petrol, 54: 1815–1848

    Google Scholar 

  • Wang C, Liu L, Chen D L, Cao Y T. 2011. Petrology, geochemistry, geochronology, and metamorphic evolution of garnet peridotites from South Altyn Tagh UHP Terrane, Northwestern China. In: Coleman R G, Wang X, eds. Utrahigh Pressure Metamorphism. Cambridge: Cambridge University Press. 541–577

    Google Scholar 

  • Wang L, Kusky T M, Polat A, Wang S J, Jiang X F, Zong K Q, Wang J P, Deng H, Fu J M. 2014. Partial melting of deeply subducted eclogite from the Sulu orogen in China. Nat Commun, 5: 5604

    Google Scholar 

  • Whitehead J, Reynolds P H, Spray J G, Gates A E, Gundersen L C S. 1995. The sub-ophiolitic metamorphic rocks of the quebec appalachians. J Geodyn, 19: 325–350

    Google Scholar 

  • Wilde S A, Valley J W, Peck W H, Graham C M. 2001. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature, 409: 175–178

    Google Scholar 

  • Woelki D, Regelous M, Haase K M, Romer R H W, Beier C. 2018. Petrogenesis of boninitic lavas from the Troodos Ophiolite, and comparison with Izu-Bonin-Mariana fore-arc crust. Earth Planet Sci Lett, 498: 203–214

    Google Scholar 

  • Wu Y B, Gao S, Zhang H F, Yang S H, Liu X C, Jiao W F, Liu Y S, Yuan H L, Gong H J, He M C. 2009. U-Pb age, trace-element, and Hf-isotope compositions of zircon in a quartz vein from eclogite in the western Dabie Mountains: Constraints on fluid flow during early exhumation of ultrahigh-pressure rocks. Am Miner, 94: 303–312

    Google Scholar 

  • **ao Y L, Hoefs J, Van Den Kerkhof A M, Li S G. 2001. Geochemical constraints of the eclogite and granulite facies metamorphism as recognized in the Raobazhai complex from North Dabie Shan, China. J Metamorph Geol, 19: 3–19

    Google Scholar 

  • **ao Y L, Hoefs J, van K A M, Simon K, Fiebig J, Zheng Y F. 2002. Fluid evolution during HP and UHP metamorphism in Dabie Shan, China: Constraints from mineral chemistry, fluid inclusions and stable isotopes. J Petrol, 43: 1505–1527

    Google Scholar 

  • **ao Y L, Sun H, Gu H O, Huang J, Li W Y, Liu L. 2015. Fluid/melt in continental deep subduction zones: Compositions and related geochemical fractionations. Sci China Earth Sci, 58: 1457–1476

    Google Scholar 

  • **ong Q, Zheng J P, Griffin W L, O’Reilly S Y, Zhao J H. 2011. Zircons in the Shenglikou ultrahigh-pressure garnet peridotite massif and its country rocks from the North Qaidam terrane (western China): Meso-Neoproterozoic crust-mantle coupling and early Paleozoic convergent plate-margin processes. Precambrian Res, 187: 33–57

    Google Scholar 

  • **ong Q, Zheng J P, Griffin W L, O’Reilly S Y, Pearson N J. 2014. Pyroxenite dykes in orogenic peridotite from North Qaidam (NE Tibet, China) track metasomatism and segregation in the mantle wedge. J Petrol, 55: 2347–2376

    Google Scholar 

  • **ong Q, Griffin W L, Zheng J P, O’Reilly S Y, Pearson N J. 2015. Episodic refertilization and metasomatism of Archean mantle: Evidence from an orogenic peridotite in North Qaidam (NE Tibet, China). Contrib Mineral Petrol, 169: 31

    Google Scholar 

  • **ong Q, Griffin W L, Zheng J P, O’Reilly S Y, Pearson N J, Xu B, Belousova E A. 2016. Southward trench migration at ~130-120 Ma caused accretion of the Neo-Tethyan forearc lithosphere in Tibetan ophiolites. Earth Planet Sci Lett, 438: 57–65

    Google Scholar 

  • **ong Q, Griffin W L, Zheng J P, Pearson N J, O’Reilly S Y. 2017a. Twolayered oceanic lithospheric mantle in a Tibetan ophiolite produced by episodic subduction of Tethyan slabs. Geochem Geophys Geosyst, 18: 1189–1213

    Google Scholar 

  • **ong Q, Henry H, Griffin W L, Zheng J P, Satsukawa T, Pearson N J, O’Reilly S Y. 2017b. High-and low-Cr chromitite and dunite in a Tibetan ophiolite: Evolution from mature subduction system to incipient forearc in the Neo-Tethyan Ocean. Contrib Mineral Petrol, 172: 45

    Google Scholar 

  • Yang J J. 2003. Titanian clinohumite-garnet-pyroxene rock from the Su-Lu UHP metamorphic terrane, China: Chemical evolution and tectonic implications. Lithos, 70: 359–379

    Google Scholar 

  • Yang J J. 2006. Ca-rich garnet-clinopyroxene rocks at Hujialin in the Su-Lu terrane (eastern China): Deeply subducted arc cumulates? J Petrol, 47: 965–990

    Google Scholar 

  • Yang J J, Godard G, Kienast J R, Lu Y Z, Sun J X. 1993. Ultrahighpressure (60 Kbar) magnesite-bearing garnet peridotites from northeastern Jiangsu, China. J Geol, 101: 541–554

    Google Scholar 

  • Yang J J, Zhu H, Deng J F, Lai S C, Zhou T Z. 1994. The discovery of garnet peridotite in Northern Chaidam Mountains and its significance (in Chinese with English abstract). Acta Petrol Mineral, 13: 97–105

    Google Scholar 

  • Yang J J, Jahn B M. 2000. Deep subduction of mantle-derived garnet peridotites from the Su-Lu UHP metamorphic terrane in China. J Metamorph Geol, 18: 167–180.

    Google Scholar 

  • Yang J J, Powell R. 2008. Ultrahigh-pressure garnet peridotites from the devolatilization of sea-floor hydrated ultramafic rocks. J Metamorph Geol, 26: 695–716

    Google Scholar 

  • Yang J S, Li T F, Zhang Z M, Chen S Y, Zhang R Y. 2006. Petrogenesis of the Zhimafang ultramafic body in the Sulu ultrahigh pressure metamorphic belt: CCSD-PP1 core study (in Chinese with English abstract). Earth Sci-J China Uni Geosci, 31: 437–456

    Google Scholar 

  • Yang J S, Zhang R Y, Li T F, Zhang Z M, Liou J G. 2007. Petrogenesis of the garnet peridotite and garnet-free peridotite of the Zhimafang ultramafic body in the Sulu ultrahigh-pressure metamorphic belt, eastern China. J Metamorph Geol, 25: 187–206

    Google Scholar 

  • Yang J S, Robinson P T, Dilek Y. 2014. Diamonds in ophiolites: A littleknown diamond occurrence. Elements, 10: 123–126

    Google Scholar 

  • Ye K, Xu P. 1992. Petrogenesis of eclogites and related peridotitic rocks in Datuan area of Rongcheng County, Shandong Province (in Chinese with English abstract). Acta Petrol Sin, 8: 27–39

    Google Scholar 

  • Ye K, Song Y R, Chen Y, Xu H J, Liu J B, Sun M. 2009. Multistage metamorphism of orogenic garnet-lherzolite from Zhimafang, Sulu UHP terrane, E. China: Implications for mantle wedge convection during progressive oceanic and continental subduction. Lithos, 109: 155–175

    Google Scholar 

  • Yoshida D, Hirajima T, Ishiwatari A. 2004. Pressure-temperature path recorded in the Yangkou garnet peridotite, in Su-Lu ultrahigh-pressure metamorphic belt, eastern China. J Petrol, 45: 1125–1145

    Google Scholar 

  • Yu H, Zhang H F, Santosh M. 2017. Mylonitized peridotites of Songshugou in the Qinling orogen, central China: A fragment of fossil oceanic lithosphere mantle. Gondwana Res, 52: 1–17

    Google Scholar 

  • Yu S Y, Zhang J X, Sun D Y, Li Y S, Gong J H. 2015. Anatexis of ultrahigh-pressure eclogite during exhumation in the North Qaidam ultrahigh-pressure terrane: Constraints from petrology, zircon U-Pb dating, and geochemistry. Geol Soc Am Bull, 127: 1290–1312

    Google Scholar 

  • Yuan H L, Gao S, Rudnick R L, ** Z M, Liu Y S, Puchtel I S, Walker R J, Yu R D. 2007. Re-Os evidence for the age and origin of peridotites from the Dabie-Sulu ultrahigh pressure metamorphic belt, China. Chem Geol, 236: 323–338

    Google Scholar 

  • Zeng L S, Liang F H, Asimow P, Chen F Y, Chen J. 2009. Partial melting of deeply subducted continental crust and the formation of quartzofeldspathic polyphase inclusions in the Sulu UHP eclogites. Chin Sci Bull, 54: 2580–2594

    Google Scholar 

  • Zhang C, Liu C Z, Wu F Y, Zhang L L, Ji W Q. 2016. Geochemistry and geochronology of mafic rocks from the Luobusa ophiolite, South Tibet. Lithos, 245: 93–108

    Google Scholar 

  • Zhang R Y, Liou J G, Cong B. 1994. Petrogenesis of garnet-bearing ultramafic rocks and associated eclogites in the Su-Lu ultrahigh-P metamorphic terrane, eastern China. J Metamorph Geol, 12: 169–186

    Google Scholar 

  • Zhang R Y, Hirajima T, Banno S, Cong B, Liou J G. 1995. Petrology of ultrahigh-pressure rocks from the southern Su-Lu region, eastern China. J Metamorph Geol, 13: 659–675

    Google Scholar 

  • Zhang R Y, Liou J G, Yang J S, Yui T F. 2000. Petrochemical constraints for dual origin of garnet peridotites from the Dabie-Sulu UHP terrane, eastern-central China. J Metamorph Geol, 18: 149–166.

    Google Scholar 

  • Zhang R Y, Liou J G, Zheng J P. 2004. Ultrahigh-pressure corundum-rich garnetite in garnet peridotite, Sulu terrane, China. Contrib Mineral Petrol, 147: 21–31

    Google Scholar 

  • Zhang R Y, Liou J G, Zheng J P, Griffin W, Yui T F, O’Reilly S Y. 2005. Petrogenesis of the Yangkou layered garnet-peridotite complex, Sulu UHP terrane, China. Am Miner, 90: 801–813

    Google Scholar 

  • Zhang R Y, Li T, Rumble D, Yui T F, Li L, Yang J S, Pan Y, Liou J G. 2007. Multiple metasomatism in Sulu ultrahigh-P garnet peridotite constrained by petrological and geochemical investigations. J Metamorph Geol, 25: 149–164

    Google Scholar 

  • Zhang R Y, Pan Y M, Yang Y H, Li T F, Liou J G, Yang J S. 2008. Chemical composition and ultrahigh-P metamorphism of garnet peridotites from the Sulu UHP terrane, China: Investigation of major, trace elements and Hf isotopes of minerals. Chem Geol, 255: 250–264

    Google Scholar 

  • Zhang R Y, Liou J G, Ernst W G. 2009. The Dabie-Sulu continental collision zone: A comprehensive review. Gondwana Res, 16: 1–26

    Google Scholar 

  • Zhang R Y, Jahn B M, Liou J G, Yang J S, Chiu H Y, Chung S L, Li T F, Lo C H. 2010. Origin and tectonic implication of an UHP metamorphic mafic-ultramafic complex from the Sulu UHP terrane, eastern China: Evidence from petrological and geochemical studies of CCSD-Main Hole core samples. Chem Geol, 276: 69–87

    Google Scholar 

  • Zhang Z M, Shen K, Sun W D, Liu Y S, Liou J G, Shi C, Wang J L. 2008. Fluids in deeply subducted continental crust: Petrology, mineral chemistry and fluid inclusion of UHP metamorphic veins from the Sulu orogen, eastern China. Geochim Cosmochim Acta, 72: 3200–3228

    Google Scholar 

  • Zhang Z M, Dong X, Liou J G, Liu F, Wang W, Yui F. 2011. Metasomatism of garnet peridotite from Jiangzhuang, southern Sulu UHP belt: Constraints on the interactions between crust and mantle rocks during subduction of continental lithosphere. J Metamorph Geol, 29: 917–937

    Google Scholar 

  • Zhao R X, Zhang R Y, Liou J G, Booth A L, Pope E C, Chamberlain C P. 2007. Petrochemistry, oxygen isotopes and U-Pb SHRIMP geochronology of mafic-ultramafic bodies from the Sulu UHP terrane, China. J Metamorph Geol, 25: 207–224

    Google Scholar 

  • Zheng J P. 2009. Comparison of mantle-derived matierals from different spatiotemporal settings: Implications for destructive and accretional processes of the North China Craton. Chin Sci Bull, 54: 3397–3416

    Google Scholar 

  • Zheng J P, Dai H K. 2018. Subduction and retreating of the western Pacific plate resulted in lithospheric mantle replacement and coupled basinmountain respond in the North China Craton. Sci China Earth Sci, 61: 406–424

    Google Scholar 

  • Zheng J P, Zhang R Y, Griffin W L, Liou J G, O’Reilly S Y. 2005. Heterogeneous and metasomatized mantle recorded by trace elements in minerals of the Donghai garnet peridotites, Sulu UHP terrane, China. Chem Geol, 221: 243–259

    Google Scholar 

  • Zheng J P, Griffin W L, O’Reilly S Y, Yang J S, Zhang R Y. 2006a. A refractory mantle protolith in younger continental crust, east-central China: Age and composition of zircon in the Sulu ultrahigh-pressure peridotite. Geology, 34: 705

    Google Scholar 

  • Zheng J P, Griffin W L, O’Reilly S Y, Yang J, Li T, Zhang M, Zhang R Y, Liou J G. 2006b. Mineral chemistry of peridotites from Paleozoic, Mesozoic and Cenozoic lithosphere: Constraints on mantle evolution beneath eastern China. J Petrol, 47: 2233–2256

    Google Scholar 

  • Zheng J P, Griffin W L, O’Reilly S Y, Yu C M, Zhang H F, Pearson N, Zhang M. 2007. Mechanism and timing of lithospheric modification and replacement beneath the eastern North China Craton: Peridotitic xenoliths from the 100 Ma Fuxin basalts and a regional synthesis. Geochim Cosmochim Acta, 71: 5203–5225

    Google Scholar 

  • Zheng J P, Sun M, Griffin W L, Zhou M F, Zhao G C, Robinson P, Tang H Y, Zhang Z H. 2008. Age and geochemistry of contrasting peridotite types in the Dabie UHP belt, eastern China: Petrogenetic and geodynamic implications. Chem Geol, 247: 282–304

    Google Scholar 

  • Zheng J P, Tang H Y, **ong Q, Griffin W L, O’Reilly S Y, Pearson N, Zhao J H, Wu Y B, Zhang J F, Liu Y S. 2014. Linking continental deep subduction with destruction of a cratonic margin: Strongly reworked North China SCLM intruded in the Triassic Sulu UHP belt. Contrib Mineral Petrol, 168: 1–21

    Google Scholar 

  • Zheng J P, Zhao Y, **ong Q. 2018. Zircon from orogenic peridotites is an ideal indicator for mantle-crust interaction (in Chinese with English abstract). Earth Sci-J China Uni Geosci, doi: 10.3799/dqkx.2018.275

    Google Scholar 

  • Zheng Y F. 2012. Metamorphic chemical geodynamics in continental subduction zones. Chem Geol, 328: 5–48

    Google Scholar 

  • Zheng Y F, **a Q X, Chen R X, Gao X Y. 2011. Partial melting, fluid supercriticality and element mobility in ultrahigh-pressure metamorphic rocks during continental collision. Earth-Sci Rev, 107: 342–374

    Google Scholar 

  • Zheng Y F, Zhao Z F, Chen Y X. 2013. Continental subduction channel processes: Plate interface interaction during continental collision. Chin Sci Bull, 58: 4371–4377

    Google Scholar 

  • Zheng Y F, Hermann J. 2014. Geochemistry of continental subductionzone fluids. Earth Planet Space, 66: 93

    Google Scholar 

  • Zheng Y F, Chen Y X. 2016. Continental versus oceanic subduction zones. Natl Sci Rev, 3: 495–519

    Google Scholar 

  • Zheng Y F, Chen R X, Xu Z, Zhang S B. 2016. The transport of water in subduction zones. Sci China Earth Sci, 59: 651–682

    Google Scholar 

  • Zheng Y, Xu Z, Zhao Z, Dai L. 2018. Mesozoic mafic magmatism in North China: Implications for thinning and destruction of cratonic lithosphere. Sci China Earth Sci, 61: 353–385

    Google Scholar 

  • Zhou M F, Robinson P T, Malpas J, Li Z. 1996. Podiform chromitites in the Luobusa ophiolite (Southern Tibet): Implications for melt-rock interaction and chromite segregation in the upper mantle. J Petrol, 37: 3–21

    Google Scholar 

  • Zhou M F, Robinson P T, Malpas J, Edwards S J, Qi L. 2005. REE and PGE geochemical constraints on the formation of dunites in the Luobusa ophiolite, southern Tibet. J Petrol, 46: 615–639

    Google Scholar 

  • Zhou X Z. 1996. The genesis of eclogite and garnet diopsidite in Datan, Shandong Province (in Chinese with English abstract). Acta Petrol Mineral, 15: 110–125

    Google Scholar 

  • Zong K, Liu Y. 2018. Carbonate metasomatism in the lithospheric mantle: Implications for cratonic destruction in North China. Sci China Earth Sci, 61: 711–729

    Google Scholar 

Download references

Acknowledgements

We thank Prof Y. F. Zheng for his organization, invitation and suggestions, and three anonymous reviewers for their constructive comments. Profs J. S. Yang and W. L. Griffin provide valuable suggestions, Dr Y. Cao supplies the original picture of Figure 5b, and X. Zhou, W. W. Wu, H. Liang, L. R. Tian, Y. X. Li and H. D. Zheng help to complete this manuscript. This work was supported by the National Natural Science Foundation of China (Grant Nos. 41520104003 & 41873032) and the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (Grant No. CUG180604).

Author information

Authors and Affiliations

Corresponding author

Correspondence to Jian** Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, J., **ong, Q., Zhao, Y. et al. Subduction-zone peridotites and their records of crust-mantle interaction. Sci. China Earth Sci. 62, 1033–1052 (2019). https://doi.org/10.1007/s11430-018-9346-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-018-9346-6

Keywords

Navigation