Log in

High- and low-Cr chromitite and dunite in a Tibetan ophiolite: evolution from mature subduction system to incipient forearc in the Neo-Tethyan Ocean

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The microstructures, major- and trace-element compositions of minerals and electron backscattered diffraction (EBSD) maps of high- and low-Cr# [spinel Cr# = Cr3+/(Cr3+ + Al3+)] chromitites and dunites from the Zedang ophiolite in the Yarlung Zangbo Suture (South Tibet) have been used to reveal their genesis and the related geodynamic processes in the Neo-Tethyan Ocean. The high-Cr# (0.77–0.80) chromitites (with or without diopside exsolution) have chromite compositions consistent with initial crystallization by interaction between boninitic magmas, harzburgite and reaction-produced magmas in a shallow, mature mantle wedge. Some high-Cr# chromitites show crystal-plastic deformation and grain growth on previous chromite relics that have exsolved needles of diopside. These features are similar to those of the Luobusa high-Cr# chromitites, possibly recycled from the deep upper mantle in a mature subduction system. In contrast, mineralogical, chemical and EBSD features of the Zedang low-Cr# (0.49–0.67) chromitites and dunites and the silicate inclusions in chromite indicate that they formed by rapid interaction between forearc basaltic magmas (MORB-like but with rare subduction input) and the Zedang harzburgites in a dynamically extended, incipient forearc lithosphere. The evidence implies that the high-Cr# chromitites were produced or emplaced in an earlier mature arc (possibly Jurassic), while the low-Cr# associations formed in an incipient forearc during the initiation of a new episode of Neo-Tethyan subduction at ~130–120 Ma. This two-episode subduction model can provide a new explanation for the coexistence of high- and low-Cr# chromitites in the same volume of ophiolitic mantle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ahmed AH, Arai S (2002) Unexpectedly high-PGE chromitite from the deeper mantle section of the northern Oman ophiolite and its tectonic implications. Contrib Mineral Petrol 143:263–278

    Article  Google Scholar 

  • Aitchison JC, Badengzhu Davies AM, Liu JB, Luo H, Maplas JG, McDermid IRC, Wu HY, Ziabrev SV, Zhou MF (2000) Remnants of a Cretaceous intra-oceanic subduction system within the Yarlung-Zangbo suture (southern Tibet). Earth Planet Sci Lett 183:231–244

    Article  Google Scholar 

  • An W, Hu XM, Garzanti E, BouDagher-Fadel MK, Wang JG, Sun GY (2014) **gaze forearc basin revisited (South Tibet): Provenance changes and origin of the **gaze Ophiolite. Geol Soc Am Bull 126:1595–1613

    Article  Google Scholar 

  • Arai S (1992) Chemistry of chromian spinel in volcanic rocks as a potential guide to magma chemistry. Mineral Mag 56:173–184

    Article  Google Scholar 

  • Arai S (2013) Conversion of low-pressure chromitites to ultrahigh-pressure chromitites by deep recycling: a good inference. Earth Planet Sci Lett 379:81–87

    Article  Google Scholar 

  • Arai S, Miura M (2016) Formation and modification of chromitites in the mantle. Lithos 264:277–295

    Article  Google Scholar 

  • Arai S, Yurimoto H (1994) Podiform chromitites of the Tari-Misaka ultramafic complex, southwestern Japan, as mantle-melt interaction products. Econ Geol 89:1279–1288

    Article  Google Scholar 

  • Arai S, Matsukage K, Isobe E, Vysotskiy S (1997) Concentration of incompatible elements in oceanic mantle: Effect of melt/wall interaction in stagnant or failed melt conduits within peridotite. Geochim Cosmochim Acta 61:671–675

    Article  Google Scholar 

  • Arai S, Uesugi J, Ahmed AH (2004) Upper crustal podiform chromitite from the northern Oman ophiolite as the stratigraphically shallowest chromitite in ophiolite and its implication for Cr concentration. Contrib Mineral Petrol 147:145–154

    Article  Google Scholar 

  • Augé T (1987) Chromite deposits in the northern Oman ophiolite: mineralogical constraints. Mineral Deposita 22:1–10

    Article  Google Scholar 

  • Bachmann F, Hielscher R, Schaeben H (2010) Texture analysis with MTEX—free and open source software toolbox. Solid State Phenom 160:63–68

    Article  Google Scholar 

  • Bachmann F, Hielscher R, Schaeben H (2011) Grain detection from 2d and 3d EBSD data: specification of the MTEX algorithm. Ultramicroscopy 111:1720–1733

    Article  Google Scholar 

  • Ballhaus C (1998) Origin of podiform chromite deposits by magma mingling. Earth Planet Sci Lett 156:185–193

    Article  Google Scholar 

  • Barnes SJ, Roeder PL (2001) The range of spinel compositions in terrestrial mafic and ultramafic rocks. J Petrol 42:2279–2302

    Article  Google Scholar 

  • Blundy JD, Falloon TJ, Wood BJ, Dalton JA (1995) Sodium partitioning between clinopyroxene and silicate melts. J Geophys Res 100:15501–15515

    Article  Google Scholar 

  • Blundy JD, Robinson JAC, Wood BJ (1998) Heavy REE are compatible in clinopyroxene on the spinel lherzolite solidus. Earth Planet Sci Lett 160:493–504

    Article  Google Scholar 

  • Borisova AY, Ceuleneer G, Kamenetsky VS, Arai S, Be**a F, Abily B, Bindeman IN, Polve M, Parseval PD, Aigouy T, Pokrovski GS (2012) A new view on the petrogenesis of the Oman ophiolite chromitites from microanalyses of chromite-hosted inclusions. J Petrol 53:2411–2440

    Article  Google Scholar 

  • Brounce M, Kelley KA, Cottrell E, Reagan MK (2015) Temporal evolution of mantle wedge oxygen fugacity during subduction initiation. Geology 43:775–778

    Article  Google Scholar 

  • Chan GHN, Aitchison JC, Crowley QG, Horstwood MSA, Searle MP, Parrish RR, Chan JSL (2015) U-Pb zircon ages for Yarlung Tsangpo suture zone ophiolites, southwestern Tibet and their tectonic implications. Gondwana Res 27:719–732

    Article  Google Scholar 

  • Chen M, Shu JF, Mao HK, **e XD, Hemley RJ (2003) Natural occurrence and synthesis of two new postspinel polymorphs of chromite. P Natl Acad Sci USA 100:14651–14654

    Article  Google Scholar 

  • Dai JG, Wang CS, Hebert R, Santosh M, Li YL, Xu JY (2011) Petrology and geochemistry of peridotites in the Zhongba ophiolite, Yarlung Zangbo Suture Zone: implications for the Early Cretaceous intra-oceanic subduction zone within the Neo-Tethys. Chem Geol 288:133–148

    Article  Google Scholar 

  • Dai JG, Wang CS, Polat A, Santosh M, Li YL, Ge YK (2013) Rapid forearc spreading between 130 and 120 Ma: evidence from geochronology and geochemistry of the **gaze ophiolite, southern Tibet. Lithos 172–173:1–16

    Article  Google Scholar 

  • DeCelles PG, Robinson DM, Zandt G (2002) Implications of shortening in the Himalayan fold-thrust belt for uplift of the Tibetan plateau. Tectonics 21:1062. doi:10.1029/2001TC001322

    Article  Google Scholar 

  • Dick HJB, Bullen T (1984) Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib Mineral Petrol 86:54–76

    Article  Google Scholar 

  • Dubois-Cote V, Hebert R, Dupuis C, Wang CS, Li YL, Dostal J (2005) Petrological and geochemical evidence for the origin of the Yarlung Zangbo ophiolites, southern Tibet. Chem Geol 214:265–286

    Article  Google Scholar 

  • Feig ST, Koepke J, Snow JE (2006) Effect of water on tholeiitic basalt phase equilibria: an experimental study under oxidizing conditions. Contrib Mineral Petrol 152:611–638

    Article  Google Scholar 

  • Gao HX, Song ZJ (1995) New progress in the study of Zetang ophiolitic melange in Tibet. Reg Geol China 4:316–322 (In Chinese with English abstract)

    Google Scholar 

  • Girardeau J, Mercier JCC (1988) Petrology and texture of the ultramafic rocks of the **gaze ophiolite (Tibet): constraints for mantle structure beneath slow-spreading ridges. Tectonophysics 147:33–58

    Article  Google Scholar 

  • Gonzalez-Jimenez JM, Proenza JA, Gervilla F, Melgarejo JC, Blanco-Moreno JA, Ruiz-Sanchez R, Griffin WL (2011) High-Cr and high-Al chromitites from the Sagua de Tanamo district, Mayari-Cristal ophiolitic massif (eastern Cuba): constraints on their origin from mineralogy and geochemistry of chromian spinel and platinum-group elements. Lithos 125:101–121

    Article  Google Scholar 

  • Gonzalez-Jimenez JM, Griffin WL, Proenza JA, Gervilla F, O’Reilly SY, Akbulut M, Pearson NJ, Arai S (2014) Chromitites in ophiolites: how, where, when, why? Part II The crystallization of chromitites. Lithos 189:140–158

    Article  Google Scholar 

  • Graham IT, Franklin BJ, Marshall B (1996) Chemistry and mineralogy of podiform chromitite deposits, southern NSW, Australia: a guide to their origin and evolution. Miner Petrol 57:129–150

    Article  Google Scholar 

  • Green TH, Blundy JD, Adam J, Yaxley GM (2000) SIMS determination of trace element partition coefficients between garnet, clinopyroxene and hydrous basaltic liquids at 2–7.5 GPa and 1080–1200 °C. Lithos 53:165–187

    Article  Google Scholar 

  • Griffin WL, Powell WJ, Pearson NJ, O’Reilly SY (2008) GLITTER: data reduction software for laser ablation ICP-MS. In: Sylvester P (ed) Laser Ablation-ICP-MS in the Earth Sciences. Mineralogical Association of Canada, Short Course Series 40, pp 204–207

  • Griffin WL, Afonso JC, Belousova EA, Gain SE, Gong XH, Gonzalez-Jimenez JM, Howell D, Huang JX, McGowan N, Pearson NJ, Satsukawa T, Shi R, Williams P, **ong Q, Zhang M, O’Reilly SY (2016) Mantle recycling: transition-zone metamorphism of Tibetan ophiolitic peridotites and its tectonic implications. J Petrol 57:655–684

    Article  Google Scholar 

  • Hauri EH, Wagner TP, Grove TL (1994) Experimental and natural partitioning of Th, U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts. Chem Geol 117:149–166

    Article  Google Scholar 

  • Hébert R, Bézard R, Guilmette C, Dostal J, Wang CS, Liu ZF (2012) The Indus-Yarlung Zangbo ophiolites from Nanga Parbat to Namche Barwa syntaxes, southern Tibet: first synthesis of petrology, geochemistry, and geochronology with incidences on geodynamic reconstructions of Neo-Tethys. Gondwana Res 22:377–397

    Article  Google Scholar 

  • Hellebrand E, Snow JE, Hoppe P, Hofmann AW (2002) Garnet-field melting and late-stage refertilization in ‘residual’ abyssal peridotites from the Central Indian Ridge. J Petrol 43:2305–2338

    Article  Google Scholar 

  • Hu XM, Jansa L, Chen L, Griffin WL, O’Reilly SY, Wang JG (2010) Provenance of lower cretaceous Wolong volcaniclastics in the Tibetan Tethyan Himalaya: implications for the final breakup of Eastern Gondwana. Sediment Geol 223:193–205

    Article  Google Scholar 

  • Hulbert LJ, Von Gruenewaldt G (1985) Textural and compositional features of chromite in the lower and critical zones of the Bushveld complex South of Potgietersrus. Econ Geol 80:872–895

    Article  Google Scholar 

  • Ji WQ, Wu FY, Chung SL, Li JX, Liu CZ (2009) Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chem Geol 262:229–245

    Article  Google Scholar 

  • Kamenetsky VS, Crawford AJ, Meffre S (2001) Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. J Petrol 42:655–671

    Article  Google Scholar 

  • Kelemen PB, Shimizu N, Salters VJM (1995) Extraction of mid-ocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels. Nature 375:747–753

    Article  Google Scholar 

  • Leblanc M (1995) Chromitite and ultramafic rock compositional zoning through a Paleotransform Fault, Poum, New Caledonia. Econ Geol 90:2028–2039

    Article  Google Scholar 

  • Li YB, Kimura JI, Machida S, Ishii T, Ishiwatari A, Maruyama S, Qiu HN, Ishikawa T, Kato Y, Haraguchi S, Takahata N, Hirahara Y, Miyazaki T (2013) High-Mg adakite and low-Ca boninite from a Bonin fore-arc seamount: implications for the reaction between slab melts and depleted mantle. J Petrol 54:1149–1175

    Article  Google Scholar 

  • Liu WL, **a B, Liu HF, Huang W, Zhou GQ, Wei DL, Zhong Y, Chen YQ (2013) Zircon U-Pb dating of basalt from Zedang ophiolite in Tibet and its geological implications. Geol Bull China 32:1356–1361 (In Chinese with English abstract)

    Google Scholar 

  • Liu CZ, Zhang C, Yang LY, Zhang LL, Ji WQ, Wu FY (2014) Formation of gabbronorites in the Purang ophiolite (SW Tibet) through melting of hydrothermally altered mantle along a detachment fault. Lithos 205:127–141

    Article  Google Scholar 

  • Locmelis M, Pearson NJ, Barnes SJ, Fiorentini ML (2011) Ruthenium in komatiitic chromite. Geochim Cosmochim Acta 75:3645–3661

    Article  Google Scholar 

  • Lorand JP, Ceuleneer G (1989) Silicate and base-metal sulfide inclusions in chromites from the Maqsad area (Oman ophiolite, Gulf of Oman): a model for entrapment. Lithos 22:173–190

    Article  Google Scholar 

  • Maffione M, van Hinsbergen DJJ, Koornneef LMT, Guilmette C, Hodges K, Borneman N, Huang WT, Ding L, Kapp P (2015) Forearc hyperextension dismembered the south Tibetan ophiolites. Geology 43:475–478

    Article  Google Scholar 

  • Matsukage K, Arai S (1998) Jadeite, albite and nepheline as inclusions in spinel of chromitite from Hess Deep, equatorial Pacific: their genesis and implications for serpentinite diapir formation. Contrib Mineral Petrol 131:111–122

    Article  Google Scholar 

  • Matveev S, Ballhaus C (2002) Role of water in the origin of podiform chromitite deposits. Earth Planet Sci Lett 203:235–243

    Article  Google Scholar 

  • McDade P, Blundy JD, Wood BJ (2003) Trace element partitioning between mantle wedge peridotite and hydrous MgO-rich melt. Am Mineral 88:1825–1831

    Article  Google Scholar 

  • McDermid IRC, Aitchison JC, Davis AM, Harrison TM, Grove M (2002) The Zedong terrane: a Late Jurassic intra-oceanic magmatic arc within the Yarlung-Tsangpo suture zone, southeastern Tibet. Chem Geol 187:267–277

    Article  Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • McElduff B, Stumpfl EF (1991) The chromite deposits of the Troodos Complex, Cyprus: evidence for the role of a fluid phase accompanying chromite formation. Mineral Deposita 26:307–318

    Article  Google Scholar 

  • McGowan NM, Griffin WL, Gonzalez-Jimenez JM, Belousova E, Afonso JC, Shi RD, McCammon CA, Pearson NJ, O’Reilly SY (2015) Tibetan chromitites: excavating the slab graveyard. Geology 43:179–182

    Article  Google Scholar 

  • Melcher F, Grum W, Simon G, Thalhammer TV, Stumpfl F (1997) Petrogenesis of the ophiolitic giant chromite deposits of Kempirsai, Kazakhstan: a study of solid and fluid inclusions in chromite. J Petrol 38:1419–1458

    Article  Google Scholar 

  • Miura M, Arai S, Ahmed AH, Mizukami T, Okuno M, Yamamoto S (2012) Podiform chromitite classification revisited: a comparison of discordant and concordant chromitite pods from Wadi Hilti, northern Oman ophiolite. J Asian Earth Sci 59:52–61

    Article  Google Scholar 

  • Morishita T, Tani K, Shukuno H, Harigane Y, Tamura A, Kumagai H, Hellebrand E (2011) Diversity of melt conduits in the Izu-Bonin-Mariana forearc mantle: implications for the earliest stage of arc magmatism. Geology 39:411–414

    Article  Google Scholar 

  • Müntener O, Kelemen PB, Grove TL (2001) The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study. Contrib Mineral Petrol 141:643–658

    Article  Google Scholar 

  • Murch BW, Campbell IH (1986) The effects of temperature, oxygen fugacity and melt composition on the behaviour of chromium in basic and ultrabasic melts. Geochim Cosmochim Acta 50:1871–1887

    Article  Google Scholar 

  • Nicolas A, Girardeau J, Marcoux J, Dupre B, Wang XB, Cao YG, Zheng HX, **ao XC (1981) The **gaze ophiolite (Tibet): a peculiar oceanic lithosphere. Nature 294:414–417

    Article  Google Scholar 

  • Niida K, Green DH (1999) Stability and chemical composition of pargastic amphibole in MORB pyrolite under upper mantle conditions. Contrib Mineral Petrol 135:18–40

    Article  Google Scholar 

  • Norman MD, Griffin WL, Pearson NJ, Garcia MO, O’Reilly SY (1998) Quantitative analysis of trace element abundances in glasses and minerals: a comparison of laser ablation inductively coupled plasma mass spectrometry, solution inductively coupled plasma mass spectrometry, proton microprobe and electron microprobe data. J Anal Atom Spectrom 13:477–482

    Article  Google Scholar 

  • Page P, Barnes SJ (2009) Using trace elements in chromites to constrain the origin of podiform chromitites in the Thetford Mines Ophiolite, Quebec, Canada. Econ Geol 104:997–1018

    Article  Google Scholar 

  • Pearce JA, Deng WM (1988) The ophiolites of the Tibetan geotraverses, Lhasa to Golmud (1985) and the Lhasa to Kathmandu (1986). Philos Tr R Soc-A 327:215–238

    Article  Google Scholar 

  • Pouchou JL, Pichoir F (1984) A new model for quantitative X-ray microanalysis. Part 1. Applications to the analysis of homogeneous samples. Rech Aerospatiale (English Edition) 3:11–38

    Google Scholar 

  • Reagan MK, Ishizuka O, Stern RJ, Kelly KA, Ohara Y, Blichert-Toft J, Bloomer SH, Cash J, Fryer P, Hanan BB, Hickey-Vargas R, Ishii T, Kimura JI, Peate DW, Rowe MC, Woods M (2010) Fore-arc basalts and subduction initiation in the Izu-Bonin-Mariana system. Geochem Geophys Geosyst 11:Q03X12. doi:10.1029/2009GC002871

  • Reagan MK, McClelland WC, Girard G, Goff KR, Peate DW, Ohara Y, Stern RJ (2013) The geology of the southernMariana fore-arc crust: implications for the scale of Eocene volcanism in the western Pacific. Earth Planet Sci Lett 380:41–51

    Article  Google Scholar 

  • Roeder PL, Reynolds I (1991) Crystallization of chromite and chromium solubility in basaltic melts. J Petrol 32:909–934

    Article  Google Scholar 

  • Rollinson H (2008) The geochemistry of mantle chromitites from the northern part of the Oman ophiolite: inferred parental melt compositions. Contrib Mineral Petrol 156:273–288

    Article  Google Scholar 

  • Rollinson H, Adetunji J (2013) Mantle podiform chromitites do not form beneath mid-ocean ridges: a case study from the Moho transition zone of the Oman ophiolite. Lithos 177:314–327

    Article  Google Scholar 

  • Satsukawa T, Griffin WL, Piazolo S, O’Reilly SY (2015) Messengers from the deep: Fossil wadsleyite-chromite microstructures from the Mantle Transition Zone. Sci Rep 5:16484. doi:10.1038/srep16484

    Article  Google Scholar 

  • Schiano P, Clocchiatti R, Lorand JP, Massare D, Deloule E, Chaussidon M (1997) Primitive basaltic melts included in podiform chromites from the Oman ophiolite. Earth Planet Sci Lett 146:489–497

    Article  Google Scholar 

  • Spandler C, Mavrogenes J, Arculus R (2005) Origin of chromitites in layered intrusions: evidence from chromite-hosted melt inclusions from the Stillwater Complex. Geology 33:893–896

    Article  Google Scholar 

  • Spandler C, O’Neill HSC, Kamenetsky VS (2007) Survival times of anomalous melt inclusions from element diffusion in olivine and chromite. Nature 447:303–306

    Article  Google Scholar 

  • Su BX, Teng FZ, Hu Y, Shi RD, Zhou MF, Zhu B, Liu F, Gong XH, Huang QS, **ao Y, Chen C, He YS (2015) Iron and magnesium isotope fractionation in oceanic lithosphere and sub-arc mantle: perspectives from ophiolites. Earth Planet Sci Lett 430:523–532

    Article  Google Scholar 

  • Tamura A, Morishita T, Ishimaru S, Hara K, Sanfilippo A, Arai S (2016) Compositional variations in spinel-hosted pargasite inclusions in the olivine-rich rock from the oceanic crust-mantle boundary zone. Contrib Mineral Petrol 171:39. doi:10.1007/s00410-016-1245-9

    Article  Google Scholar 

  • Tiepolo M, Oberti R, Zanetti A, Vannucci R, Foley SF (2007) Trace-element partitioning between amphibole and silicate melt. Rev Mineral Geochem 67:417–452

    Article  Google Scholar 

  • Ulmer P, Trommsdorff V (1995) Serpentine stability to mantle depths and subduction-related magmatism. Science 268:858–861

    Article  Google Scholar 

  • Uysal I, Tarkian M, Burhan Sadiklar M, Zaccarini F, Meisel T, Garuti G, Heidrich S (2009) Petrology of Al- and Cr-rich ophiolitic chromitites from the Mugla, SW Turkey: implications from composition of chromite, solid inclusions of platinum-group mineral, silicate, and base-metal mineral, and Os-isotope geochemistry. Contrib Mineral Petrol 158:659–674

    Article  Google Scholar 

  • Wendlandt RF, Eggler DH (1980) The origin of potassic magmas: 2. Stability of phlogopite in natural spinel lherzolite and in the system KAlSiO4-MgO-SiO2-H2O-CO2 at high pressures and high temperatures. Am J Sci 280:421–458

    Article  Google Scholar 

  • Workman RK, Hart SR (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett 231:53–72

    Article  Google Scholar 

  • Wu FY, Liu CZ, Zhang LL, Zhang C, Wang JG, Ji WQ, Liu XC (2014) Yarlung Zangbo ophiolite: a critical updated view. Acta Petrol Sin 30:293–325 (In Chinese with English abstract)

    Google Scholar 

  • **ong FH, Yang JS, Robinson PT, Xu XZ, Liu Z, Li Y, Li JY, Chen SY (2015) Origin of podiform chromitite, a new model based on the Luobusa ophiolite, Tibet. Gondwana Res 27:525–542

    Article  Google Scholar 

  • **ong Q, Griffin WL, Zheng JP, O’Reilly SY, Pearson NJ, Xu B, Belousova EA (2016) Southward trench migration at ~130–120 Ma caused accretion of the Neo-Tethyan forearc lithosphere in Tibetan ophiolites. Earth Planet Sci Lett 438:57–65

    Article  Google Scholar 

  • **ong FH, Yang JS, Robinson PT, Xu XZ, Liu Z, Zhou WD, Feng GY, Xu JF, Li J, Niu XL (2017a) High-Al and high-Cr podiform chromitites from the western Yarlung-Zangbo suture zone, Tibet: implications from mineralogy and geochemistry of chromian spinel, and platinum-group elements. Ore Geol Res 80:1020–1041

    Article  Google Scholar 

  • **ong Q, Griffin WL, Zheng JP, O’Reilly SY, Pearson NJ (2017b) Two-layered oceanic lithospheric mantle in a Tibetan ophiolite produced by episodic subduction of Tethyan slabs. Geochem Geophys Geosyst 18:1189–1213. doi:10.1002/2016GC006681

    Article  Google Scholar 

  • Yamamoto S, Komiya T, Hirose K, Maruyama S (2009) Coesite and clinopyroxene exsolution lamellae in chromitites: in-situ ultrahigh-pressure evidence from podiform chromitites in the Luobusa ophiolite, southern Tibet. Lithos 109:314–322

    Article  Google Scholar 

  • Yang JS, Dobrzhinetskaya L, Bai WJ, Fang QS, Robinson PT, Zhang JF, Green HW II (2007) Diamond- and coesite-bearing chromitites from the Luobusa ophiolite, Tibet. Geology 35:875–878

    Article  Google Scholar 

  • Yang JS, Robinson PT, Dilek Y (2014) Diamonds in ophiolites: a little-known diamond occurrence. Elements 10:123–126

    Article  Google Scholar 

  • Yin A, Harrison TM (2000) Geologic evolution of the Himalayan-Tibetan orogen. Annu Rev Earth Planet Sci 28:211–280

    Article  Google Scholar 

  • Zaccarini F, Garuti G, Proenza JA, Campos L, Thalhammer OAR, Aiglsperger T, Lewis JF (2011) Chromite and platinum group elements mineralization in the Santa Elena Ultramafic Nappe (Costa Rica): geodynamic implications. Geol Acta 9:407–423

    Google Scholar 

  • Zhang LL (2014) Age and petrogenesis of the Zedong ophiolite, southern Tibet. Dissertation, Institute of Geology and Geophysics, Chinese Academy of Sciences (In Chinese with English abstract)

  • Zhang C, Liu CZ, Wu FY, Zhang LL, Ji WQ (2016) Geochemistry and geochronology of mafic rocks from the Luobusa ophiolite, South Tibet. Lithos 245:93–108

    Article  Google Scholar 

  • Zhang YF, ** ZM, Griffin WL, Wang C, Wu Y (2017) High-pressure experiments provide insights into the Mantle Transition Zone history of chromitite in Tibetan ophiolites. Earth Planet Sci Lett 463:151–158

    Article  Google Scholar 

  • Zhong LF, **a B, Zhang YQ, Wang R, Wei DL, Yang ZQ (2006) SHRIMP age determination of the diabase in Luobusa ophiolite, southern **zang (Tibet). Geol Rev 52:224–229 (In Chinese with English abstract)

    Google Scholar 

  • Zhou MF, Robinson RT (1997) Origin and tectonic environment of podiform chromite deposits. Econ Geol 92:259–262

    Article  Google Scholar 

  • Zhou MF, Robinson PT, Bai WJ (1994) Formation of podiform chromitites by melt/rock interaction in the upper mantle. Mineral Deposita 29:98–101

    Article  Google Scholar 

  • Zhou MF, Robinson PT, Malpas J, Li ZJ (1996) Podiform chromitites in the Luobusa ophiolite (southern Tibet): implications for melt-rock interaction and chromite segregation in the upper mantle. J Petrol 37:3–21

    Article  Google Scholar 

  • Zhou MF, Sun M, Keays RR, Kerrich RW (1998) Controls on platinum-group elemental distributions of podiform chromitites: a case study of high-Cr and high-Al chromitites from Chinese orogenic belts. Geochim Cosmochim Acta 62:677–688

    Article  Google Scholar 

  • Zhou MF, Robinson PT, Malpas J, Edwards SJ, Qi L (2005) REE and PGE geochemical constraints on the formation of dunites in the Luobusa ophiolite, southern Tibet. J Petrol 46:615–639

    Article  Google Scholar 

  • Zhou MF, Robinson PT, Su BX, Gao JF, Li JW, Yang JS, Malpas J (2014) Compositions of chromite, associated minerals, and parental magmas of podiform chromite deposits: the role of slab contamination of asthenospheric melts in suprasubduction zone environments. Gondwana Res 26:262–283

    Article  Google Scholar 

  • Zhu DC, Chung SL, Mo XX, Zhao ZD, Niu YL, Song B, Yang YH (2009) The 132 Ma Comei-Bunbury large igneous province: remnants identified in present-day southern Tibet and southwestern Australia. Geology 37:583–586

    Article  Google Scholar 

  • Zhu DC, Zhao ZD, Niu YL, Mo XX, Chung SL, Hou ZQ, Wang LQ, Wu FY (2011) The Lhasa Terrane: record of a microcontinent and its histories of drift and growth. Earth Planet Sci Lett 301:241–255

    Article  Google Scholar 

  • Zhu DC, Zhao ZD, Niu YL, Dilek Y, Hou ZQ, Mo XX (2013) The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Res 23:1429–1454

    Article  Google Scholar 

Download references

Acknowledgements

We thank Will Powell, Yoann Gréau, David Adams, Sarah Gain and Liene Spruzeniece (CCFS/GEMOC, Macquarie University) for their expert assistance with the analytical work, and Prof. **g-Sui Yang for his help with the field work. This paper benefited greatly from constructive comments from Dr. Akihiro Tamura and an anonymous reviewer, and Editor Othmar Müntener provided very useful suggestions and handling. This work was supported by the National Natural Science Foundation of China (41520104003), the Ministry of Land and Resources of China (12120115027201), the CCFS ARC Centre of Excellence grants (to S.Y.O’R and W.L.G.), a Macquarie University International Postgraduate Scholarship (to Q.X.), and postgraduate funds from the MQ Faculty of Science and Engineering and the Department of Earth and Planetary Sciences. This study used instrumentation funded by DEST Systemic Infrastructure Grants, ARC LIEF, NCRIS/AuScope, industry partners and Macquarie University. This is contribution 965 from the ARC Centre of Excellence for Core to Crust Fluid Systems (http://www.ccfs.mq.edu.au) and 1151 from the GEMOC Key Centre (http://www.gemoc.mq.edu.au).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing **ong.

Additional information

Communicated by Othmar Müntener.

Electronic supplementary material

Below is the link to the electronic supplementary material.

410_2017_1364_MOESM1_ESM.pdf

Online Resource 1_Fig. ESM1 Scanned and field photos of representative chromitite-dunite associations in the Zedang ophiolite (South Tibet). a and b: High-Cr# chromitite; e to h: low-Cr# chromitite and low-Cr# dunite. f and g: the transitions between low-Cr# dunite and low-Cr# chromitite and between harzburgite and low-Cr# chromitite, respectively. i and j: representative filed relationships between low-Cr# disseminated chromitite and low-Cr# dunite. Abbreviations: D, disseminated; N, nodular; M, massive; Ol, olivine; Ch, chromite; Cpx, clinopyrxene; Opx, orthopyroxene. White scale bars represent 1 mm in length, except for those in i and j are 2 cm in length (PDF 316 kb)

410_2017_1364_MOESM2_ESM.pdf

Online Resource 1_Fig. ESM2 Backscattered electron (BSE; a, g, m and s) images and X-ray elemental maps (b-f, h-l, n-r and t-x) illustrating four representative occurrences of exsolved diopside needles in chromite from high-Cr# chromitites (10ZD-7-1a, -1b and -1c) in the Zedang ophiolite (South Tibet). The white rectangles in g, m and s represent the corresponding X-ray map** areas. Note the exsolved Di in a-f, reflecting the exsolution followed by the crystal structure cubic chromite. Mineral abbreviations see the caption of Fig. 2 (PDF 311 kb)

410_2017_1364_MOESM3_ESM.pdf

Online Resource 1_Fig. ESM3 Backscattered electron (BSE) images (a, f, k) and X-ray elemental maps (b-e, g-j, l-o) illustrating the occurrence of poly-phase silicate inclusions within chromite from low-Cr# chromitites in the Zedang ophiolite (South Tibet). a to e: inclusions of amphibole, phlogopite, serpentine and orthopyroxene in a chromite grain from ZD11-55; f to j: a poly-phase inclusion of amphibole, phlogopite and serpentine in a chromite grain from ZD11-55; k to o: abundant irregular inclusions of amphibole, phlogopite and serpentine in a chromite grain from ZD11-50-1. Note that the Al-deficient areas in c enclose orthopyroxene and serpentine; those in h and m represent serpentine. The Ca maps (d, i, n) mark the occurrence of amphibole. The Na-rich but Ca-deficient areas in e, j and o delineate phlogopite. White scale bars represent 100 μm in length. Mineral abbreviations see the caption of Fig. 2 (PDF 254 kb)

410_2017_1364_MOESM4_ESM.pdf

Online Resource 1_Fig. ESM4 Crystallographic preferred orientation (CPO) of olivine (Ol), orthopyroxene (Opx), clinopyroxene (Cpx) and chromite (Ch) in the analyzed region (shown in Fig. 10a) of the harzburgite and chromitite parts of ZD11-55. Lower hemisphere, equal-area stereographic projections. “N” represents the number of analyzed grains, calculated as one point per grain. CPO strength can be estimated using the J-index (Bunge 2013) and M-index (Skemer et al. 2005). “MD” means maximum density. “pfJ” represents index of fabric intensity for each crystal axis (Michibayashi and Mainprice 2004). The black dashed lines indicate the trace of the foliation, almost parallel to the lithologic boundary shown in Fig. 10a (PDF 193 kb)

410_2017_1364_MOESM5_ESM.pdf

Online Resource 1_Fig. ESM5 Crystallographic preferred orientation (CPO) of chromite in the analyzed region (as shown in Fig. 11a) of 10ZD-7-1a. Abbreviations are the same as those in Fig. ESM4 (PDF 66 kb)

Supplementary material 6 (DOCX 54 kb)

Supplementary material 7 (DOCX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**ong, Q., Henry, H., Griffin, W.L. et al. High- and low-Cr chromitite and dunite in a Tibetan ophiolite: evolution from mature subduction system to incipient forearc in the Neo-Tethyan Ocean. Contrib Mineral Petrol 172, 45 (2017). https://doi.org/10.1007/s00410-017-1364-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-017-1364-y

Keywords

Navigation