Log in

Pipecolic acid confers defence tolerance against Ralstonia solanacearum, the causal agent of bacterial wilt, by altering defence enzymes in tomato

  • Research Articles
  • Published:
Vegetos Aims and scope Submit manuscript

Abstract

l-Pipecolic acid (Pip), a non-protein amino acid derived from lysine, plays a crucial role in regulating plant disease resistance. Ralstonia solanacearum, a bacterium that causes bacterial wilt which affects many commercially relevant plants by reducing the output as much as 90%. The goal of the current study was to identify potential applications for Pip in tomato plant defense and bacterial wilt prevention. Two tomato varieties, one susceptible to wilt and the other tolerant were compared in terms of Pip’s effects, a key signaling molecule in the defense against Ralstonia solanacearum infection. Several biochemical markers, including phenolic compounds and antioxidant enzymes, are influenced when Pip is applied as foliar spray. At 0, 24, 48, and 72 h after spraying, the antioxidant (CAT, SOD, and GPx) and non-antioxidative enzyme activities in the leaves of resistant (GAT-5) and susceptible (GT-2) cultivars were examined. Here, we describe how 1 mM Pip improved resistance to R. solanacearum in two local varieties: GT-2 (Susceptible) and GAT-5 (tolerant). Reactive oxygen species (ROS) accumulation was decreased in plants infected with R. solanacearum, whereas the activity of defense-related enzymes increased. The enzymatic activity of GAT-5 was maximum between 24 and 72-h post-spray (hps), as indicated by increase in the antioxidant enzymes superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT). These findings demonstrate that tomato plant develop resistance to R. solanacearum following exogenous Pip treatment, possibly through regulating ROS generation in plants, a critical aspect of the plant's defense against pathogen invasion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

The data supporting the conclusions of this article are included within the article. Any queries regarding this data may be directed to the corresponding author.

References

  • Akhtar I, Sumera J, Khajista J, Amina T, Komal N, Anis AS, Ramish N, Nimra K (2023) Adverse impact of ROS on nutrient accumulation and distribution in plants. In: Reactive oxygen species. Springer Nature Singapore, Singapore, pp 263–92

  • Al-Khayri JM, Rashmi R, Toppo V, Chole PB, Banadka A, Sudheer WN, Nagella P, Shehata WF, Al-Mssallem MQ, Alessa FM, Almaghasla MI, Rezk A-S (2023) Plant secondary metabolites: the weapons for biotic stress management. Metabolites 13(6):716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allagulova CR, Lubyanova AR, Avalbaev AM (2023) Multiple ways of nitric oxide production in plants and its functional activity under abiotic stress conditions. Int J Mol Sci 24(14):11637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Shammari WB, Altamimi HR, Abdelaal K (2023) Improvement in physiobiochemical and yield characteristics of pea plants with nano silica and melatonin under salinity stress conditions. Horticulturae 9(6):711

    Article  Google Scholar 

  • Anjum NA, Sarvajeet SG, Francisco JC, Cristina O-V, Luis EH, Narendra T, Adriano S, Mirza H, Masayuki F (2022) Editorial: recent insights into the double role of hydrogen peroxide in plants. Front Plant Sci 13.

  • Ayub MA, Misbah A, Muhammad ZR (2023) Role of inorganic bio stimulant elements in plant growth. In: Sustainable Plant Nutrition. Elsevier, pp. 229–61

  • Bano A, Tauqeer A, Qadri M, Naeem K (2023) Bioactive metabolites of plants and microbes and their role in agricultural sustainability and mitigation of plant stress. South Afric J Bot 159:98–109

    Article  CAS  Google Scholar 

  • Behiry S, Soliman SA, Massoud MA, Abdelbary M, Kordy AM, Abdelkhalek A, Heflish A (2023) Trichoderma pubescens elicit induced systemic resistance in tomato challenged by Rhizoctonia solani. Journal of Fungi 9(2):167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernsdorff F, Döring A-C, Gruner K, Schuck S, Bräutigam A, Zeier J (2016) Pipecolic acid orchestrates plant systemic acquired resistance and defense priming via salicylic acid-dependent and -independent pathways. Plant Cell 28(1):102–129

    Article  CAS  PubMed  Google Scholar 

  • Biswas SK, Prakesh HG, Palat R, Bahar J (2019) Induced synthesis of defense molecules in tomato (Solamum lycopercicum L.) against fusarium wilt through plant extracts. Banglad J Bot 48(1):169–175

    Article  Google Scholar 

  • Du Bo, Zhang W, Liu B, **g Hu, Wei Z, Shi Z, He R, Zhu L, Chen R, Han B, He G (2009) Identification and characterization of Bph14, a gene conferring resistance to brown planthopper in rice. Proc Natl Acad Sci 106(52):22163–22168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brambilla A, Lenk M, Ghirardo A, Eccleston L, Knappe C, Weber B, Lange B, Imani J, Schäffner AR, Schnitzler J-P, Corina Vlot A (2023) Pipecolic acid synthesis is required for systemic acquired resistance and plant-to-plant-induced immunity in barley edited by V Flors. J Exp Bot 74(10):3033–3046

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee A, Soham H, Poulomi S, Shouvik G, Sudip B, Vikas G, Gyanenedra S, Gyanenedra PS, Anirban M, Nasim A (2023) Physico-biochemical traits and differential expression of genes linked with terminal heat tolerance in bread wheat (Triticum aestivum L.). Cereal Res Commun

  • Cheng J, Zhang S, Yi Y, Qin Y, Chen Z-H, Deng F, Zeng F (2023) Hydrogen peroxide reduces root cadmium uptake but facilitates root-to-shoot cadmium translocation in rice through modulating cadmium transporters. Plant Physiol Biochem 200:107754

    Article  CAS  PubMed  Google Scholar 

  • Daboy C, Dakole DL, Joseph B, Fonkoua M, Nguefack J, Irénée S (2023) Callistemon citrinus, cymbopogon citratus, and oxalis barrelieri, extracts stimulate defence of tomato against, Fusarium, Wilt. Plant.

  • Dashtaki M, Mohammad RB, Eslam M, Reza AN (2023) Differential responses of wheat genotypes to irrigation regimes through antioxidant defense system, grain yield, gene expression, and grain fatty acid profile. Cereal Res Commun

  • Ding H, Chen W, Li J, Fangwei Fu, Li Y, **ao S (2023) Physiological characteristics and cold resistance of five woody plants in treeline ecotone of sygera mountains. Sustainability 15(4):3040

    Article  CAS  Google Scholar 

  • Doan V, Hien PP, Hoseinifar SH, Ringø E, El-Haroun E, Faggio C, Olsen RE, Tran HQ, Stejskal V, Abdel-Latif HMR, Dawood MAO (2023) Marine-derived products as functional feed additives in aquaculture: a review. Aquacult Rep 31:101679

    Google Scholar 

  • Duan **, Liu F, Bi H, Ai X (2022) Grafting enhances bacterial wilt resistance in peppers. Agriculture 12(5):583

    Article  CAS  Google Scholar 

  • Fitoussi N, Borrego E, Kolomiets MV, Qing X, Bucki P, Sela N, Belausov E, Miyara SB (2021) Oxylipins are implicated as communication signals in tomato–root-knot nematode (Meloidogyne javanica) interaction. Sci Rep 11(1):326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerd PB, Jan KS, Thomas PJ (2006) membrane transport of hydrogen peroxide. Biochim Biophys Acta (BBA) Mol Cell Res 1758:994–1003

  • Ghorbel M, Zribi I, Besbes M, Bouali N, Brini F (2023) Catalase gene family in durum wheat: genome-wide analysis and expression profiling in response to multiple abiotic stress conditions. Plants 12(14):2720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hadimani S, Joshi SM, Geetha N, Shetty HS, Jogaiah S (2023) Elucidating the role of effector protein as biomarker for enhanced resistance against pearl millet downy mildew disease. Physiol Mol Plant Pathol 127:102076

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Mohammad AH, Jaime ATS, Masayuki F (2012) Plant response and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. In: Crop Stress and its Management: Perspectives and Strategies. Springer, Dordrecht, pp 261–315

  • He F, Dexing K, Zhe F, Yongqing X, Qiang Y, Dan L, Xue W, Xu F, Fenglan L (2023) Genome-wide identification of the NPR1-like gene family in solanum tuberosum and functional characterization of StNPR1 in resistance to ralstonia solanacearum. Genes 14(6):1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernández JA, Ferrer MA, Jiménez A, Barceló AR, Sevilla F (2001) Antioxidant systems and O2.−/H2O2 production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins. Plant Physiol 127(3):817–831

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang W, Wang Y, Li X, Zhang Y (2020) Biosynthesis and regulation of salicylic acid and N-hydroxypipecolic acid in plant immunity. Mol Plant 13(1):31–41

    Article  CAS  PubMed  Google Scholar 

  • Jahan A, Masroor AKM, Bilal A, Khan Bilal MA, Ram PP, Mohd G (2023) Hydrogen peroxide: regulator of plant development and abiotic stress response. In: Reactive Oxygen Species. Springer Nature Singapore, Singapore, pp. 213–28

  • Janani R, Brij BS, Shri D, Ajay A, Harshawardhan C, Ramesh KY, Dharmendra S, Dinesh S, Amolkumar US, Prakash K (2023) Physiological and biochemical responses of garden pea genotypes under reproductive stage heat stress. Gen Resour Crop Evolut

  • Kaur S, Arora M, Gupta AK, Kaur N (2012) Exploration of biochemical and molecular diversity in chickpea seeds to categorize cold stress-tolerant and susceptible genotypes. Acta Physiol Plant 34(2):569–580

    Article  CAS  Google Scholar 

  • Kaya C, Ugurlar F, Ashraf M, Alyemeni MN, Ahmad P (2023) Exploring the synergistic effects of melatonin and salicylic acid in enhancing drought stress tolerance in tomato plants through fine-tuning oxidative-nitrosative processes and methylglyoxal metabolism. Sci Hortic 321:112368

    Article  CAS  Google Scholar 

  • Khan M, Ali S, Azzawi TNIA, Saqib S, Ullah F, Ayaz A, Zaman W (2023) The key roles of ROS and RNS as a signaling molecule in plant-microbe interactions. Antioxidants 12(2):268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khasin ML, Lois FB, Patrick MO, Nathan AP, Erin DS, Scott ES, Gautam S, Deanna LF-H (2023) Phenylpropanoids following wounding and infection of sweet sorghum lines differing in responses to stalk pathogens. Phytopathology

  • Khoshsokhan F, Babalar M, Salami SA, Sheikhakbari-Mehr R, Mirjalili MH (2023) An efficient protocol for production of rosmarinic acid in Salvia Nemorosa L. In Vitro Cell Dev Biol Plant 59(3):298–314

    Article  CAS  Google Scholar 

  • Kim JS, Lim JH, Cho SK (2023) Effect of antioxidant and anti-inflammatory on bioactive components of carrot (Daucus carota L.) Leaves from Jeju Island. Appl Biol Chem 66(1):34

    Article  CAS  Google Scholar 

  • Kumar S, Minhajul Abedin Md, Singh AK, Saurav D (2020) Role of phenolic compounds in plant-defensive mechanisms. Plant Phenolics in Sustainable Agriculture. Springer, Singapore, pp 517–32

    Chapter  Google Scholar 

  • Lakshmi G, Beena R, Soni KB, Viji MM, Jha UC (2023) Exogenously applied plant growth regulator protects rice from heat-induced damage by modulating plant defense mechanism. J Crop Sci Biotechnol 26(1):63–75

    Article  CAS  Google Scholar 

  • Lenk M, Marion W, Kornelia B, Florian H, Claudia K, Birgit L, Timsy FH, Felicitas M, Sanjukta D, Anton S, Corina Vlot A (2019) Pipecolic acid is induced in barley upon infection and triggers immune responses associated with elevated nitric oxide accumulation. Mol Plant-Microbe Interact 32(10):1303–13

    Article  CAS  PubMed  Google Scholar 

  • Lenzen S, Lushchak VI, Scholz F (2022) The pro-radical hydrogen peroxide as a stable hydroxyl radical distributor: lessons from pancreatic beta cells. Arch Toxicol 96(7):1915–1920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li D, Yan M, Liang H, Li Z, Zhang S (2023a) Exogenous calcium induces different hydraulic strategies in response to osmotic stress in maize seedlings. Plants 12(10):1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li N, Kaiguo Pu, Ding D, Yang Y, Niu T, Li J, **e J (2023b) Foliar spraying of glycine betaine alleviated growth inhibition, photoinhibition, and oxidative stress in pepper (Capsicum Annuum L.) seedlings under low temperatures combined with Low light. Plants 12(13):2563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Shu P, **ang L, Sheng J, Shen L (2023c) CRISPR/Cas9-mediated SlATG5 mutagenesis reduces the resistance of tomato fruit to botrytis cinerea. Foods 12(14):2750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim G-H (2023) Regulation of salicylic acid and N-hydroxy-pipecolic acid in systemic acquired resistance. Plant Pathol J 39(1):21–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Wang Di, Tang H, Li H, Zhang X, Dong S, Zhang Li, Yang L (2023) Identification and analysis of the catalase gene family response to abiotic stress in Nicotiana tabacum L. Agronomy 13(3):936

    Article  Google Scholar 

  • Lobato MC, Olivieri FP, Machinandiarena MF, Becherucci ME, Feldman ML (2023) Undaria Pinnatifida (Harvey) suringar aqueous extract activates potato defense responses against phytophthora infestans. Physiol Mol Plant Pathol 127:102081

    Article  CAS  Google Scholar 

  • Mandal S, Das RK, Mishra S (2011) Differential occurrence of oxidative burst and antioxidative mechanism in compatible and incompatible interactions of Solanum lycopersicum and Ralstonia solanacearum. Plant Physiol Biochem 49(2):117–123

    Article  CAS  PubMed  Google Scholar 

  • Manna M, Rengasamy B, Sinha AK (2023) Revisiting the role of MAPK signalling pathway in plants and its manipulation for crop improvement. Plant Cell Environ 46(8):2277–2295

    Article  CAS  PubMed  Google Scholar 

  • Maslennikova D, Ivanov S, Petrova S, Burkhanova G, Maksimov I, Lastochkina O (2023) Components of the phenylpropanoid pathway in the implementation of the protective effect of sodium nitroprusside on wheat under salinity. Plants 12(11):2123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maurya R, Madhulika N (2022) Superoxide dismutase: a key enzyme for the survival of intracellular pathogens in host

  • Mbofung GCY, Sernett J, Horner HT, Robertson AE (2016) Comparison of susceptible and resistant maize hybrids to colonization by Clavibacter michiganensis Subsp. nebraskensis. Plant Dis 100(4):711–717

    Article  PubMed  Google Scholar 

  • Molinari S, Leonetti P (2023) Inhibition of ROS-scavenging enzyme system is a key event in tomato genetic resistance against root-knot nematodes. Int J Mol Sci 24(8):7324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Möller MN, Ernesto C, Florencia O, Ana CL, Leonor T, Ana D (2019) Diffusion and transport of reactive species across cell membranes: 3–19

  • Návarová H, Bernsdorff F, Döring A-C, Zeier J (2013) Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity. Plant Cell 24(12):5123–5141

    Article  Google Scholar 

  • Niri MD, Tarighi S, Taheri P (2023) Defense activation in wheat against xanthomonas translucens via application of biological and chemical inducers. Journal of Plant Pathology 105(2):493–505

    Article  Google Scholar 

  • Nutricati E, De Pascali M, Negro C, Bianco PA, Quaglino F, Passera A, Pierro R, Marcone C, Panattoni A, Sabella E, De Bellis L, Luvisi A (2023) Signaling cross-talk between salicylic and gentisic acid in the ‘candidatus phytoplasma solani’ interaction with sangiovese vines. Plants 12(14):2695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pashkovskiy P, Ivanov Y, Ivanova A, Kartashov A, Zlobin I, Lyubimov V, Ashikhmin A, Bolshakov M, Kreslavski V, Kuznetsov V, Allakhverdiev SI (2023) Effect of light of different spectral compositions on pro/antioxidant status, content of some pigments and secondary metabolites and expression of related genes in scots pine. Plants 12(13):2552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pazarlar S, Sanver U, Cetinkaya N (2021) Exogenous pipecolic acid modulates plant defence responses against Podosphaera Xanthii and Pseudomonas syringae Pv. lachrymans in cucumber (Cucumis Sativus L.)” edited by P. Franken. Plant Biol 23(3):473–84

  • Porth I, Hamberger B, White R, Ritland K (2011) Defense mechanisms against herbivory in picea: sequence evolution and expression regulation of gene family members in the phenylpropanoid pathway. BMC Genomics 12(1):608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajashekar CB (2023) Dual role of plant phenolic compounds as antioxidants and prooxidants. Am J Plant Sci 14(1):15–28

    Article  CAS  Google Scholar 

  • Sa R, Tao L, Zhang X, Liu D, Chen L, Wang J, Liu L, Chunmei Xu, Zhang Y (2022) The effect of alternaria leaf spot on the antioxidant system of cucumber seedlings. Eur J Plant Pathol 164(1):125–138

    Article  CAS  Google Scholar 

  • Sabharwal U, Subramanian RB (2023) Variation in defense enzymes in GT-2 and GAT-5 varieties of tomato during infection with bacterial wilt disease in Central Gujarat, India. Plant Stress 8:100160

    Article  CAS  Google Scholar 

  • Sáenz-de la OD, Morales LO, Strid Å, Feregrino-Perez AA, Torres-Pacheco I, Guevara-González RG (2023) Antioxidant and drought-acclimation responses in UV-B-exposed transgenic Nicotiana tabacum displaying constitutive overproduction of H2O2. Photochem Photobiol Sci 22(10): 2373–2387

  • Samantaray S, Kanchan K (2023) Hydrogen sulfide: an evolving gasotransmitter regulating salinity and drought stress response in plants: 71–91

  • Schnake A, Hartmann M, Schreiber S, Malik J, Brahmann L, Yildiz I, Von Dahlen J, Rose LE, Schaffrath U, Zeier J (2020) Inducible biosynthesis and immune function of the systemic acquired resistance inducer N-hydroxypipecolic acid in monocotyledonous and dicotyledonous Plants. J Exp Bot 71(20):6444–6459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi H, Wang Y, Cheng Z, Ye T, Chan Z (2012) Analysis of natural variation in bermudagrass (Cynodon dactylon) reveals physiological responses underlying drought tolerance” edited by I De Smet. Plos One 7(12):e53422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi H, Yong L, Anming D, Weifeng W, Yuhe S (2023) Induced defense strategies of plants against ralstonia solanacearum. Front Microbiol 14

  • Shields A, Vanessa S, Christian Danve MC (2022) Salicylic acid and N-hydroxypipecolic acid at the fulcrum of the plant immunity-growth equilibrium. Front Plant Sci 13

  • Silva E, Teixeira JA, Pereira MO, Rocha CMR, Sousa AM (2023) Evolving biofilm inhibition and eradication in clinical settings through plant-based antibiofilm agents. Phytomedicine 119:154973

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Rajput VD, Sharma R, Ghazaryan K, Minkina T (2023a) Salinity stress and nanoparticles: insights into antioxidative enzymatic resistance, signaling, and defense mechanisms. Environ Res 235:116585

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Singh A, Choudhary KK (2023b) Revisiting the role of phenylpropanoids in plant defense against UV-B stress. Plant Stress 7:100143

    Article  CAS  Google Scholar 

  • Singh S, Amrit LS, Kamal KP, Kiran KR, Gangadhara RD, Mahatma MK, Aman V, Narendra Kumar CBP, Lokesh KT, Suhail A, Radha N, Kirti R, Praveen K (2023c) Accumulation of resveratrol, ferulic acid and iron in seeds confer iron deficiency chlorosis tolerance to a novel genetic stock of peanut (Arachis Hypogaea L.) grown in calcareous soils. Physiol Mol Biol Plants

  • Singla P, Bhardwaj RD, Kaur S, Kaur J, Grewal SK (2020) Metabolic Adjustments during Compatible Interaction between Barley Genotypes and Stripe Rust Pathogen. Plant Physiol Biochem 147:295–302

    Article  CAS  PubMed  Google Scholar 

  • Srinivas P, Neeraj J (2024) Zinc-induced changes in antioxidant capacity of sorghum bicolor: an experimental approach. Eur. Chem. Bull. 12(Special Issue 4):15576–85.

  • Subba R, Swarnendu R, Piyush M (2023) Phytohormones as a novel weapon in management of plant stress against biotic agents. In: Global Climate Change and Plant Stress Management. Wiley, pp 277–86

  • Sun W, Shahrajabian MH (2023) Therapeutic potential of phenolic compounds in medicinal plants—natural health products for human health. Molecules 28(4):1845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taheri P, Irannejad A, Goldani M, Tarighi S (2014) Oxidative burst and enzymatic antioxidant systems in rice plants during interaction with alternaria alternata. Eur J Plant Pathol 140(4):829–839

    Article  CAS  Google Scholar 

  • Talaat NB, Mostafa AA, Abd SN, El-Rahman. (2023) A novel plant growth-promoting agent mitigates salt toxicity in barley (Hordeum Vulgare L.) by activating photosynthetic, antioxidant defense, and methylglyoxal detoxification machineries. J Soil Sci Plant Nutr 23(1):308–324

    Article  CAS  Google Scholar 

  • Tamaoki D, Seo S, Yamada S, Kano A, Miyamoto A, Shishido H, Miyoshi S, Taniguchi S, Akimitsu K, Gomi K (2013) Jasmonic acid and salicylic acid activate a common defense system in rice. Plant Signal Behav 8(6):e24260

    Article  PubMed  PubMed Central  Google Scholar 

  • Waititu JK, Zhang X, Chen T, Zhang C, Zhao Y, Wang H (2021) Transcriptome analysis of tolerant and susceptible maize genotypes reveals novel insights about the molecular mechanisms underlying drought responses in leaves. Int J Mol Sci 22(13):6980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P, Luo Q, Yang W, Ahammed GJ, Ding S, Chen X, Wang J, **a X, Shi K (2021) A novel role of pipecolic acid biosynthetic pathway in drought tolerance through the antioxidant system in tomato. Antioxidants 10(12):1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu K, Luo G, Yang H, Chang X, Chuntao Wu, Chen L, Tian W (2023) Two polysaccharide elicitors trigger systemic acquired resistance to resist Sclerotium rolfsii and its transcriptional characteristic in atractylodes macrocephala. Physiol Mol Plant Pathol 125:102027

    Article  CAS  Google Scholar 

  • Xue L, Junjie MA, Qian HU, **feng MA (2023) Superoxide dismutase plays an important role in maize resistance to soil CO2 Stress. Acta Geol Sinica Engl Ed 97(3):995–1001

    Article  CAS  Google Scholar 

  • Yadav, Shalini and Debasis Chattopadhyay. 2023. “Lignin: The Building Block of Defense Responses to Stress in Plants.” Journal of Plant Growth Regulation.

  • Yadav V, Wang Z, Wei C, Amo A, Ahmed B, Yang X, Zhang X (2020) Phenylpropanoid pathway engineering: an emerging approach towards plant defense. Pathogens 9(4):312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Q, Liu S, Sun Y, Chen C, Yang S, Lin M, Long J, Yao J, Lin Y, Yi F, Meng L, Tan Y, Ai Q, Chen N, Yang Y (2023) Targeting oxidative stress as a preventive and therapeutic approach for cardiovascular disease. J Transl Med 21(1):519

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang W, Zhu C, Ma X, Li G, Gan L, Ng D, **a K (2013) Hydrogen peroxide is a second messenger in the salicylic acid-triggered adventitious rooting process in mung bean seedlings edited by K Wu. Plos One 8(12):e84580

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang J, Cao W, Rui Y (2017) Interactions between nanoparticles and plants: phytotoxicity and defense mechanisms. J Plant Interact 12(1):158–169

    Article  CAS  Google Scholar 

  • Yu S, Ma Q, Li Y, Zou J (2023) Molecular and regulatory mechanisms of oxidative stress adaptation in Streptococcus mutans. Mol Oral Microbiol 38(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Qiu Y, Li M, Song F, Jiang M (2020) Functions of pipecolic acid on induced resistance against botrytis cinerea and Pseudomonas syringae Pv. tomato DC3000 in tomato plants. J Phytopathol 168(10):591–600

    Article  CAS  Google Scholar 

  • Zheng X, Van Huystee RB (1992) Peroxidase-regulated elongation of segments from peanut hypocotyls. Plant Sci 81(1):47–56. https://doi.org/10.1016/0168-9452(92)90023-F

    Article  CAS  Google Scholar 

  • Zheng C, Li L, Han Z, Li W, Wen X (2023) Effects of manganese on the antioxidant system and related gene expression levels in the ‘hong yang’ kiwifruit seedlings. Phyton 92(8):2399–2412

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Rajesh Acharya for providing seeds of tomato plant variety of Main Vegetable Research Station, Anand Agricultural University. The authors would like to thank Dr. Ghanshyam B. Patil, Head, and Dr. R.R. Prajapati, Research Associate from the Centre for Advanced Research in Plant Tissue Culture, Department of Agriculture Biotechnology, for assistance in the field work. The authors wish to thank Dr. Mounil Mankad for their contributions in conducting the bioassays at Centre for Advance Research in Plant Tissue Culture and Department of Nanotechnology, Anand Agriculture University, 388110 Gujarat, India. We are grateful to Dr. Ankit Sudhir (GSFC University, Vadodara, Gujarat, India) for their professional and technical support.

Funding

The authors are highly thankful to the SHODH – (Scheme of Develo** High-Quality Research) Education Department, Gujarat State, India for financial support.

Author information

Authors and Affiliations

Authors

Contributions

Usha Sabharwal performed the experiments, analyzed the data, and drafted the manuscript. Prof. R.B. Subramanian designed and conceived the idea and critically revised the manuscript. Approved the version to be published; and agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. Piyush Kant Rai and Kamlesh Choure: Substantial contributions to the interpretation of data for the work. Piyush Tiwari and Saurabh Kumar Mehta: Substantial contributions to the conception of the work and revision of the manuscript.

Corresponding author

Correspondence to R. B. Subramanian.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethics approval

Not applicable.

Consent to participate

All authors consent to participate in the manuscript publication.

Consent for publication

All authors approved the manuscript to be published.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabharwal, U., Rai, P.K., Tiwari, P. et al. Pipecolic acid confers defence tolerance against Ralstonia solanacearum, the causal agent of bacterial wilt, by altering defence enzymes in tomato. Vegetos (2024). https://doi.org/10.1007/s42535-024-00894-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42535-024-00894-4

Keywords

Navigation