Log in

Recent progress in porous Mg-based foam preparation approaches: effect of processing parameters on structure and mechanical property

  • Review
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Porous metals are a class of cellular materials with lightweight and unique mechanical, electrical, thermal, physical and acoustic characteristics. Magnesium and magnesium alloy foams have exhibited excellent advantages. In particular, open-cell Mg-based foams (porous Mg/Mg alloy foams) have been used for bioresorbable implants, CO2 trap** systems, filters, heat exchangers, absorbent panels and many other applications. While significant progress has been taken in producing porous Mg-based foams with good structure–property relations, but with a large number of different processing parameters, different mechanical properties and pore morphologies of each porous Mg-based foam, it is essential to understand the individual effects of each aspect of the parameters. Therefore, the present article summarized the effects of available processing parameters on the structure and mechanical properties of the porous Mg-based foams. Finally, the future perspectives to enhance the structure and properties of porous Mg/Mg alloy foams were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. A. Kennedy, Porous metals and metal foams made from powders, in: K. Kondoh (Eds.), Powder Metallurgy, InTech, Rijeka, Croatia, 2002, pp. 31–46.

    Google Scholar 

  2. H.M. Silva, C.D. Carvalho, N.R. Peixihno, Int. Appl. Mech. 53 (2017) 356–360.

    Article  Google Scholar 

  3. L.J. Gibson, M.F. Ashby, Cellular solids: structure and properties, 2nd ed., Cambridge University Press, Cambridge, UK, 1997.

    Book  MATH  Google Scholar 

  4. O.D. Neikov, Handbook of Non-ferrous Metal Powder (2nd Ed.), Porous powder and metallic foams, in: O.D. Neikov, S.S. Naboychenko, N.A. Yefimov (Eds.), Elsevier, 2019, pp. 323–349.

  5. L.P. Lefebvre, J. Banhart, D.C. Dunand, Adv. Eng. Mater. 10 (2008) 775–787.

    Article  Google Scholar 

  6. M.A. De Meller, Produit métallique pour l'obtention d'objets laminés, moulés ou autres, et procédés pour sa fabrication, French, 1926.

    Google Scholar 

  7. J. Banhart, Adv. Eng. Mater. 15 (2013) 82–111.

    Article  Google Scholar 

  8. I. **, L.D. Kenny, H. Sang, Method of producing lightweight foamed metal, USA, 1990.

  9. F. Witte, H. Ulrich, M. Rudert, E. Willbold, J. Biomed. Mater. Res. Part A 81 (2007) 748–756.

    Article  Google Scholar 

  10. Y.L. Liao, G.B. Qiu, Y. Yang, X.W. Lv, C.G. Bai, Rare Met. Mater. Eng. 45 (2016) 2498–2502.

    Google Scholar 

  11. G.L. Hao, F.S. Han, W.D. Li, J. Porous Mater. 16 (2009) 251–256.

    Article  Google Scholar 

  12. A. Kucharczyk, K. Naplocha, J.W. Kaczmar, H. Dieringa, K.U. Kainer, Adv. Eng. Mater. 20 (2017) 1700562.

    Article  Google Scholar 

  13. K. Hong, H. Park, Y. Kim, M. Knapek, P. Minárik, K. Máthis, A. Ymamoto, H. Choe, J. Mech. Behavior Biomed. Mater. 98 (2019) 213–224.

    Article  Google Scholar 

  14. I.A. Figueroa, M.A. Suarez, M. Velasco-Castro, H. Pfeiffer, B. Alcántar-Vázquez, G. González, I. Alfonso, G.A. Lara-Rodríguez, Thermochim. Acta 621 (2015) 74–80.

    Article  Google Scholar 

  15. M. Velasco-Castro, I.A. Figueroa, H. Pfeiffer, J.F. Gómez-García, Thermochim. Acta 664 (2018) 73–80.

    Article  Google Scholar 

  16. E.M.E. Luna, F. Barari, R. Woolley, R. Goodall, JoVE 94 (2014) e52268.

  17. R. Goodall, A. Mortensen, Porous Metals, 5th Ed., In: D.E. Laughlin, K. Hono (Eds.), Physical Metallurgy, Elsevier, 2014, pp. 2399–2595.

  18. C.E. Wen, Y. Yamada, K. Shimojima, Y. Chino, H. Hosokawa, M. Mabuchi, Mater. Lett. 58 (2004) 357–360.

    Article  Google Scholar 

  19. T. Studnitzky, O. Anderesen, I. Morgenthal, G. Stephani, B. Kieback, Sintering of aluminium and magnesium alloy fiber structure. Conference: Congress proceedings from Euro PM2011 Congress and Exhibition, Euro PM2011, EPMA, Barcelona, Spain, 2011. https://www.epma.com/publications/euro-pm-proceedings/product/euro-pm2011-pm-lightweight-and-porous-materials.

  20. X. Zhang, X.W. Li, J.G. Li, X.D. Sun, Prog. Nat. Sci. Mater. Int. 23 (2013) 183–189.

    Article  Google Scholar 

  21. X. Zhang, X.W. Li, J.G. Li, X.D. Sun, Mater. Sci. Eng. C 42 (2014) 362–367.

    Article  Google Scholar 

  22. L.L. Tan, M.M. Gong, F. Zheng, B.C. Zhang, K. Yang, Biomed. Mater. 4 (2009) 015016.

  23. L. Jauer, B. Jülich, M. Voshage, W. Meiners, European Cells and Materials 30 (2015) No. S3, 1.

  24. V. Manakari, G. Parande, M. Gupta, Metals 7 (2017) 2.

    Article  Google Scholar 

  25. H. Nakajima, Prog. Mater. Sci. 52 (2007) 1091–1173.

    Article  Google Scholar 

  26. J.A. Liu, L.R. Zhang, S.J. Liu, Z.W. Han, Z.Q. Dong, Mater, Charact, 159 (2020) 110045.

  27. S.F. Aida, H. Zuhailawati, A.S. Anasyida, Proced. Eng. 184 (2017) 290–297.

    Article  Google Scholar 

  28. J.O. Osorio-Hernández, M.A. Suarez, R. Goodall, G.A. Lara-Rodriguez, I. Alfonso, I.A. Figueroa, Mater. Des. 64 (2014) 136–141.

    Article  Google Scholar 

  29. Y. An, C.E. Wen, P.D. Hodgson, C.H. Yang, Comput. Mater. Sci. 55 (2012) 1–9.

    Article  Google Scholar 

  30. Y. Yamada, K. Shimojima, Y. Sakaguchi, M. Mabuchi, M. Nakamura, T. Asahina, T. Mukai, H. Kanahashi, K. Higashi, Adv. Eng. Mater. 2 (2000) 184–187.

    Article  Google Scholar 

  31. G.A. Lara-Rodriguez, I.A. Figueroa, M.A. Suarez, O. Novelo-Peralta, I. Alfonso, R. Goodall, J. Mater. Process. Technol. 243 (2017) 16–22.

    Article  Google Scholar 

  32. Y. Li, J. Zhou, P. Pavanram, M.A. Leeflang, L.I. Fockaert, B. Pouran, N. Tümer, K.U. Schröder, J.M.C. Mol, H. Weinans, H. Jahr, A.A. Zadpoor, Acta Biomater. 67 (2018) 378–392.

    Article  Google Scholar 

  33. Y. Yamada, C.E Wen, K. Shimojima, H. Hosokawa, Y. Chino, M. Mabuchi, Mater. Trans. 43 (2002) 1298–1305.

    Article  Google Scholar 

  34. X.Q. Cao, Z.H. Wang, H.W. Ma, L.M. Zhao, G.T. Yang, Trans. Nonferrous Met. Soc. China 16 (2006) 351–356.

    Article  Google Scholar 

  35. B. Jiang, Z.J. Wang, N.Q. Zhao, Scripta Mater. 56 (2007) 169–172.

    Article  Google Scholar 

  36. H. Bafti, A. Habibolahzadeh, Mater. Des. 52 (2013) 404–411.

    Article  Google Scholar 

  37. J. Čapekm, D. Vojtěch, Mater. Sci. Eng. C 35 (2014) 21–28.

    Article  Google Scholar 

  38. X.Z. Yue, K. Kitazono, X.J. Yue, B.Y. Hur, J. Magn. Alloy. 4 (2016) 1–7.

    Article  Google Scholar 

  39. L. Polonsky, S. Lipson, H. Markus, Modern Castings 39 (1961) 57–71.

    Google Scholar 

  40. Y. Conde, J.F. Despois, R. Goodall, A. Marmottant, L. Salvo, C. San Marchi, A. Mortensen, Adv. Eng. Mater. 8 (2006) 795–803.

  41. R. Goodall, J.F. Despois, A. Mortensen, J. Eur. Ceram. Soc. 26 (2006) 3487–3497.

    Article  Google Scholar 

  42. C. San Marchi, A. Mortensen, Acta Mater. 49 (2001) 3959–3969.

  43. C. San Marchi, J.F. Despois, A. Mortensen, Fabrication and compressive response of open-cell aluminum foams with sub-millimeter pores, in: B. Jourffrey (Eds.), Microstructural Investigation and Analysis, Wiley & Sons Ltd., New Jersey, USA, 2006.

  44. J. Trinidad, I. Marco, G. Arruebarrena, J. Wendt, D. Letzig, E.S. de Argandoña, R. Goodall, Adv. Eng. Mater. 16 (2014) 241–247.

    Article  Google Scholar 

  45. H.A Kuchek, Method of making porous metallic article, USA, 1966.

  46. J.F. Despois, A. Marmottant, L. Salvo, A. Mortensen, Mater. Sci. Eng. A 462 (2007) 68–75.

    Article  Google Scholar 

  47. M.F. Ashby, A. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, H.N.G. Wadley, Metal foams: a design guide, Butterworth-Heinemann, Oxford, UK, 2000.

    Google Scholar 

  48. W.C. Carter, Mathematics of microstructure evolution, Proceeding Materials Week 95, Minerals, Metals, & Materials Society, Cleveland, OH, Pittsburgh, USA, pp. 1–14.

  49. J.L. Hilden, K.P. Trumble, J. Colloid Interf. Sci. 267 (2003) 463–474.

    Article  Google Scholar 

  50. K.P. Trumble, Acta Mater. 46 (1998) 2363–2367.

    Article  Google Scholar 

  51. E. Louis, J.A. Miralles, J.M. Molina, J. Mater. Sci. 50 (2015) 1655–1665.

    Article  Google Scholar 

  52. N.T. Kirland, I. Kolbeinsson, T. Woodfield, G. Dias, M.P. Staiger, Int. J. Modern Phys. B 23 (2009) 1002–1008.

    Article  Google Scholar 

  53. N.T. Kirland, I. Kolbeinsson, T. Woodfield, G.J. Dias, M.P. Staiger, Mater. Sci. Eng. B 176 (2011) 1666–1672.

    Article  Google Scholar 

  54. Z. Schwartz, C.H. Lohmann, J. Oefinger, L.F. Bonewald, D.D. Dean, B.D. Boyan, Adv. Dental Res. 13 (1999) 38–48.

    Article  Google Scholar 

  55. T.L. Nguyen, A. Blanquet, M.P. Staiger, G.J. Dias, T.B.F. Woodfield, J. Biomater. Res. B Appl. Biomater. 100 (2012) 1310–1318.

    Article  Google Scholar 

  56. X.Z. Yue, B.Y. Hur, Korean J. Mater. Res. 22 (2012) 309–315.

    Google Scholar 

  57. M.J. Balart, J.B. Patel, Z.Y. Fan, Metals 6 (2016) 131.

    Article  Google Scholar 

  58. W. Ha, Y.J. Kim, J. Alloy. Compd. 422 (2006) 208–213.

    Article  Google Scholar 

  59. A. Vahidgolpayegani, C. Wen, P. Hodgson, Y. Li, Production method and characterization of porous Mg and Mg alloys for biomedical application, In: C.E. Wen (Eds.), Metallic Foam Bone, Woohead Publishing, Elsevier, UK, 2017, pp. 25–82.

    Chapter  Google Scholar 

  60. S. Dutta, K.B. Devi, M. Roy, Adv. Powder Technol. 28 (2017) 3204–3212.

    Article  Google Scholar 

  61. Z.S. Seyedraoufi, Sh. Mirdamadi, J. Mech. Behavior Biomed. Mater. 21 (2013) 1–8.

    Article  Google Scholar 

  62. I. Levin, T. Naegler, R. Heinz, D. Osusko, E. Cuevas, A. Engel, J. Ilmberger, R.L. Langenfelds, B. Neininger, C.V. Rohden, L.P. Steele, R. Weller, D.E. Worthy, S.A. Zimov, Atmos. Chem. Phys. 10 (2010) 2655–2662.

    Article  Google Scholar 

  63. N. Santella, D.T. Ho, P. Schlosser, E. Gottlieb, W.J. Munger, J.W. Elkins, G.S. Dutton, Atmos. Environ. 47 (2012) 533–540.

    Article  Google Scholar 

  64. H. Jafari, M.H. Idris, A. Ourd**i, J. Mater. Process. Technol. 214 (2014) 988–997.

    Article  Google Scholar 

  65. V.M. Posada, J. Ramirez, J.P. Allain, A.R. Shetty, P. Fernázndez-Morales, J. Mater. Eng. Perform. 29 (2020) 681–690.

    Article  Google Scholar 

  66. J.M. Rúa, A.A. Zuleta, J. Ramírez, P. Fernández-Morales, Surf. Coat. Technol. 360 (2019) 213–221.

    Article  Google Scholar 

  67. Y. Yamada, K. Shimojima, Y. Sakaguchi, M. Mabuchi, M. Nakamura, T. Asahina. Processing of cellular magnesium materials, in: J. Banhart, M.F. Ashby, N.A. Fleck (Eds.), Metal Foams and Porous Metal Structures, Verlag MIT, Bremen, Germany, 1999, pp. 147–152.

    Google Scholar 

  68. C. San Marchi, A. Brothers, D.C. Dunand, MRS 754 (2002) 18.

  69. Y. Boonyongmaneerat, D.C. Dunand, Adv. Eng. Mater. 10 (2008) 379–383.

    Article  Google Scholar 

  70. T. Preuksarattanawut, E. Nisaratanaporn, S. Asavavisithchai, Proced. Eng. 32 (2012) 205–211.

    Article  Google Scholar 

  71. G.F. Jiang, G. He, Mater. Sci. Eng. C 43 (2014) 317–320.

    Article  Google Scholar 

  72. T. Wada, A. Inoue, Mater. Trans. 44 (2003) 2228–2231.

    Article  Google Scholar 

  73. W.E. Warren, A.M. Kraynik, J. Appl. Mech. 55 (1988) 341–346.

  74. W.E. Warren, A.M. Kraynik, C.M. Stone, J. Mech. Phys. Solids 37 (1989) 717–733.

    Article  Google Scholar 

  75. X.F. Wang, Z.D. Li, Y.J. Huang, K. Wang, X.F. Wang, F.S. Han, Mater. Des. 64 (2014) 324–329.

    Article  Google Scholar 

  76. J.A. Liu, S.Q. Shi, Z.B. Zheng, K. Huang, Y.Y. Yan, Mater. Sci. Eng. A 708 (2017) 329–335.

    Article  Google Scholar 

  77. J.A. Liu, S.Q. Shi, L.R. Zhang, Mater. Lett. 231 (2018) 154–158.

    Article  Google Scholar 

  78. M.F. Ashby, Acta Metall. 22 (1974) 275–289.

    Article  Google Scholar 

  79. F.B. Swinkels, M.F. Ashby, Acta Metall. 29 (1981) 259–281.

    Article  Google Scholar 

  80. K. Lietaert, L. Weber, J. Van Humbeeck, A. Mortensen, J. Luyten, J. Schrooten, J. Magn. Alloy. 1 (2013) 303–311.

    Article  Google Scholar 

  81. B.S. Bucklen, W.A. Wettergreen, E. Yuksel, M.A.K. Liebschner, Virtual Phys. Prototy** 3 (2008) 13–23.

    Article  Google Scholar 

  82. M.P. Staiger, I. Kolbeinsson, N.T. Kirkland, T. Nguyen, G. Dias, T.B.F. Woodfield, Mater. Lett. 64 (2010) 2572–2574.

    Article  Google Scholar 

  83. T.L. Nguyen, M.P. Staiger, G.J. Dias, T.B.F. Woodfield, Adv. Eng. Mater. 13 (2011) 872–881.

    Article  Google Scholar 

  84. V.M. Posada, C. Orozco, J. Ramírez, P. Femandez-Morales, Mater. Sci. Forum 933 (2018) 291–296.

    Article  Google Scholar 

  85. G.F. Jiang, Q.Y. Li, C.L. Wang, J. Dong, G. He, Mater. Des. 67 (2015) 354–359.

    Article  Google Scholar 

  86. B. Jiang, N.Q. Zhao, C.S. Shi, J.J. Li, Scripta Mater. 53 (2005) 781–785.

    Article  Google Scholar 

  87. Y. Yamada, K. Shimojima, Y. Sakaguchi, M. Macuchi, M. Nakamura, T. Asahina, T. Mukai, H. Kanahashi, K. Higashi, Mater. Sci. Eng. A 280 (2000) 225–228.

    Article  Google Scholar 

  88. Y.Y. Zhao, D.X. Sun, Scripta Mater. 44 (2001) 105–110.

    Article  Google Scholar 

  89. G.L. Hao, F.S. Han, J. Wu, X.F. Wang, Powder Metall. 50 (2007) 127–131.

    Article  Google Scholar 

  90. H.R. Bakhsheshi-Rad, E. Dayaghi, A.F. Ismail, M. Aziz, A. Akhavan-Farid, X.B. Chen, Trans. Nonferrous Met. Soc. China 29 (2019) 984–996.

    Article  Google Scholar 

  91. I. Mutlu, Trans. Nonferrous Met. Soc. China 28 (2018) 114–124.

    Article  Google Scholar 

  92. N. Michailidis, F. Stergioudi, Mater. Des. 32 (2011) 1559–1564.

    Article  Google Scholar 

  93. J. Čapek, D. Vojtěch, Mater. Sci. Eng. C 33 (2013) 564–569.

    Article  Google Scholar 

  94. A. **napat, A.R. Kennedy, J. Alloy. Compd. 499 (2010) 43–47.

    Article  Google Scholar 

  95. Y.Z. Bi, Y. Zheng, Y. Li, Mater. Lett. 161 (2015) 583–586.

    Article  Google Scholar 

  96. P. Salvetr, P. Novák, D. Vljtech, Mater. Technol. 50 (2016) 917–922.

    Google Scholar 

  97. G.L. Hao, F.S. Han, J. Wu, X.F. Wang, Mater. Sci. Technol. 23 (2007) 492–496.

    Article  Google Scholar 

  98. F. Han, G. Hao, X. Wang, X. Wei, Characterisation of mechanical and dam** properties of porous AZ91 Mg alloy, in: L.P. Lefebvre, J. Banhart, D.C. Dunand (Eds.), MetFoam 2007 Proceeding of the 5th International Conference on Porous Metals and Metallic Foams, DEStech Publications, Lancaster, PA, USA, 2008, pp. 375–378.

    Google Scholar 

  99. H.Y. Zhuang, Y. Han, A.L. Feng, Mater. Sci. Eng. C 28 (2008) 1462–1466.

    Article  Google Scholar 

  100. Y. Yan, Y.J. Kang, D. Li, K. Yu, T. **ao, Q.Y.Wang, Y.W. Deng, H.J. Fang, D.Y. Jiang, Y. Zhang, J. Mater. Eng. Perform. 27 (2018) 970–984.

    Article  Google Scholar 

  101. E. Aghion, Y. Perez, Mater. Charact. 96 (2014) 78–83.

    Article  Google Scholar 

  102. E. Aghion, B. Bronfin, F. Von Buch, S. Schumann, H. Friedrich, JOM 55 (2003) 30–33.

    Article  Google Scholar 

  103. N. Zou, Q.Z. Li, JOM 70 (2018) 650–655.

    Article  Google Scholar 

  104. S. Singh, N. Bhatnagar, Mater. Lett. 212 (2018) 62–64.

    Article  Google Scholar 

  105. D.P. Mondal, M. Patel, H. Jain, A.K. Jha, S. Das, R. Dasgupta, Mater. Sci. Eng. A 625 (2015) 331–342.

    Article  Google Scholar 

  106. I. Papantoniou, H.P. Kyriakopoulou, D.I. Pantelis, D.E. Manolakos, Fracture and Structural Integrity 50 (2019) 497–504.

    Google Scholar 

  107. A.M.M. Ramirez, Production of highly porous al-ni foams by powder metallurgy using dolomite as a foaming agent, Concordia University, Canada, 2016.

  108. A. Laptev, O. Vyal, M. Bram, H.P. Buchkremer, D. Stöver, Powder Metall. 48 (2005) 358–364.

    Article  Google Scholar 

  109. H. Bafti, A. Habibolahzadeh, Mater. Des. 31 (2010) 4122–4129.

    Article  Google Scholar 

  110. A.D. Akinwekomi, W.C. Law, M.T. Choy, L. Chen, C.Y. Tang, G.C.P. Tsui, X.S. Yang, Mater. Sci. Eng. A 726 (2018) 82–92.

    Article  Google Scholar 

  111. R. Surace, L.A.C. De Filippis, A.D. Ludovico, G. Boghetich, Mater. Des. 30 (2009) 1878–1885.

    Article  Google Scholar 

  112. M. Guden, E. Celik, S. Cetiner, A. Aydin, Biomaterials 53 (2004) 257–266.

    Google Scholar 

  113. X.Q. Wang, J.V. Wood, Y.J. Sui, H.B. Lu, J. Shanghai Uni. (Engl. Ed.) 2 (1998) 305–310.

  114. P. Novák, V. Knotek, M. Voděrová, J. Kubásek, J. Šerák, A. Michalcová, D. Vojtěch, J. Alloy. Compd. 497 (2010) 90–94.

    Article  Google Scholar 

  115. E. Aghion, T. Yered, Y. Perez, Y. Gueta, Adv. Eng. Mater. 12 (2010) B374–B379.

    Article  Google Scholar 

  116. H. Okumura, K. Watanabe, S. Kamado, Y. Kojima, Mater. Sci. Forum 419–422 (2003) 1019–1024.

    Article  Google Scholar 

  117. H. Okumura, K. Watanabe, S. Kamado, Y. Kojima, Mater. Trans. 44 (2003) 595–600.

    Article  Google Scholar 

  118. M.H. Kang, H.D. Jung, S.W. Kim, S.M. Lee, H.N. Kim, Y.R. Estrin, Y.H. Koh, Mater. Lett. 108 (2013) 122–124.

    Article  Google Scholar 

  119. Y.J. Quan, F.M. Zhang, H. Rebl, B. Nebe, O. Keßler, E. Burkel, Mater. Sci. Eng. A 565 (2013) 118–125.

    Article  Google Scholar 

  120. F.M. Zhang, E. Otterstein, E. Burkel, Adv. Eng. Mater. 12 (2010) 863–872.

    Article  Google Scholar 

  121. E. Angelini, B. De Benedetti, D. Fulginiti, S. Grassini, F. Ferraris, M. Parvis, Development and characterization of porous magnesium bioresorbable implants, 2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings, IEEE, Turin, Italy, 2015, pp. 633–638.

    Google Scholar 

  122. P. Freni, P. Tecchio, S. Rollino, B. De Benedetti, Porosity characterization of biomedical magnesium foams production by spark plasma sintering, 2014 IEEE International Symposium on Medical Measurements and Application (MeMeA), IEEE, Lisboa, Portugal, 2014, pp. 1–6.

    Google Scholar 

  123. A. Borrell, M.D. Salvador, Sinter. Technol. Method Appl. (2018) 3–24.

  124. A.D. Akinwekomi, W.C. Law, C.Y. Tang, L. Chen, C.P. Tsui, Composit. Part B Eng. 93 (2016) 302–309.

    Article  Google Scholar 

  125. A.D. Akinwekomi, Heliyon 5 (2019) e01531.

  126. I. Morgenthal, O. Andersen, C. Kostmann, G. Stephani, T. Studnitzky, F. Witte, B. Kieback, Adv. Eng. Mater. 16 (2014) 309–318.

    Article  Google Scholar 

  127. K. Bobe, E. Willbold, I. Morgenthal, O. Andersen, T. Studnitzky, J. Nellesen, W. Tillmann, C. Vogt, K. Vano, F. Witte, Acta Biomater. 9 (2013) 8611–8623.

    Article  Google Scholar 

  128. G. Lotze, G. Stephani, W. Löser, H. Fiedler, Mater. Sci. Eng. A 133 (1991) 680–683.

    Article  Google Scholar 

  129. M.M. Gong, L.L. Tan, F. Geng, K. Yang, Acta Metall. Sin. 44 (2008) 237–242.

    Google Scholar 

  130. M. Gieseke, C. Noelke, S. Kaierle, V. Wesling, H. Haferkamp, Magn. Technol. (2013) 65–68.

  131. R. Karunakaran, S. Ortgies, A. Tamayol, F. Bobaru, M.P. Sealy, Bioactive Mater. 5 (2020) 44–45.

    Article  Google Scholar 

  132. H. Fayazfar, M. Salarian, A. Rogalsky, D. Sarker, P. Russo, V. Paserin, E. Toyserkani, Mater. Des. 144 (2018) 98–128.

    Article  Google Scholar 

  133. Y. Qin, P. Wen, H. Guo, D.D. **a, Y.F. Zheng, L. Jauer, R. Poprawe, M. Voshage, J.H. Schleifenbaum, Acta Biomater. 98 (2019) 3–22.

    Article  Google Scholar 

  134. K.W. Wei, X.Y. Zeng, Z.M. Wang, J.F. Deng, M.N. Liu, G. Huang, X.C. Yuan, Mater. Sci. Eng. A 756 (2019) 226–236.

    Article  Google Scholar 

  135. C.C. Ng, M.M. Savalani, H.C. Man, I. Gibson, Virtual Phys. Prototy** 5 (2010) 13–19.

    Article  Google Scholar 

  136. A. Pawlak, P.E. Szymczyk, T. Kurzynowski, E. Chlebus, Rapid Prototyp. J. 26 (2020) 249–258.

    Article  Google Scholar 

  137. A. Pawlak, E. Chlebus, Interdisciplinary J. Eng. Sci. 3 (2015) 10–15.

    Google Scholar 

  138. B.C, Zhang, H.L. Liao, C. Coddet, Mater. Des. 34 (2012) 753–758.

  139. L. Jauer, B. Julich, M. Voshage, W. Meiners, European Cells and Materials 30 (2015) No. 3, 1.

  140. F. Bär, L. Berger, L. Jauer, G. Kurtuldu, R. Schäublin, J.H. Schleifenbaum, J.F. Löffler, Acta Mater. 98 (2019) 36–49.

    Google Scholar 

  141. J.P. Kruth, P. Mercelis, J. Van Vaerenbergh, L. Froyen, M. Rombouts, Rapid Prototype J. 11 (2005) 26–36.

    Article  Google Scholar 

  142. L.V. Boiko, V.I. Shapovalov, E.A. Chernykh, I.A. Belyi, I.A. Rastorgueva, V.P. Martynov, V.I. Dolzhenkov, Powder Metall. Met. Ceramics 30 (1991) 877–880.

    Article  Google Scholar 

  143. Y. Liu, Y.X. Li, J. Wan, H.W. Zhang, Mater. Sci. Eng. A 402 (2005) 47–54.

    Article  Google Scholar 

  144. X. Wang, Y.X. Li, Y. Liu, Int. J. Cast Met. Res. 22 (2009) 200–203.

    Article  Google Scholar 

  145. C.X. Zhou, Y. Liu, H.W. Zhang, X. Chen, Y.X. Li, Metall. Mater. Trans. A 51 (2020) 3238–3247.

    Article  Google Scholar 

  146. J. Capek, D. Vojtech, Preparation and properties of magnesium porous materials for medical applications, METAL 2011, Brno, Czech Republic, EU, 2011.

    Google Scholar 

  147. C.E. Wen, Y. Yamada, K. Shimojima, Y. Chino, H. Hosokawa, M. Mabuchi, Mater. Sci. Forum 419–422 (2003) 1001–1006.

    Article  Google Scholar 

  148. R. Parai, S. Bandyopadhyay-Ghosh, J. Mech. Behavior Biomed. Mater. 96 (2019) 45–52.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20171437), Key R&D Program of Jiangsu Province of China (Grant No. BE2018044), the Guiding Captital for Industry Development Project of Suqian of China (Grant No. H201714), the Basic Science Research Project of Nantong of China (Grant No. JC2021190) and the Natural Science Foundation of China (Grant No. 12072105).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong-hui Yang or Jian-qing Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agbedor, SO., Yang, Dh., Cao, J. et al. Recent progress in porous Mg-based foam preparation approaches: effect of processing parameters on structure and mechanical property. J. Iron Steel Res. Int. 29, 371–402 (2022). https://doi.org/10.1007/s42243-021-00671-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00671-6

Keywords

Navigation