Log in

Nanotechnology for precision and sustainable agriculture: recent advances, challenges and future implications

  • Mini-Reviews
  • Published:
Nanotechnology for Environmental Engineering Aims and scope Submit manuscript

Abstract

Sustainable agriculture is extremely critical for sustenance of all the life forms owing to the exceedingly demand of food products for an ever-increasing population across the globe. Essentially, sustainable agriculture involves holistic management of livestock, crops and fisheries, so as to make the farming process self-sustaining for a longer period. Food and agriculture sector contributes heavily in meeting the human demands and thus sustainable agricultural practices would result in positive and long-lasting consequences. Sustainable growth in the field of agriculture can be achievable by the intervention of advanced technologies such as nanotechnology. Conventional farming methods failed to fully utilize the available resources. To circumvent these limitations, nanotechnology can be effectively used to enhance the crop quality and productivity. Applications of nanotechnology in the field of agriculture will lead to improved plant growth, stabilization of soil and microbes, targeted usage of chemicals and most importantly nanotechnology contributes profoundly for waste management. The enhanced activity displayed by the nanoparticles is essentially because of their extremely small size resulting in larger surface area. Nanoparticles are used as seed priming agents resulting in enhanced seed germination rate, consequently favouring for overall growth of the plant. Nanocapsulated fertilizers and pesticides brought a revolutionary change encouraging for betterment of crop and animal health without affecting the environment. Nanotechnology bears tremendous potential to effectively integrate manifold activities of agriculture practices with sustainable productivity. Although the potential benefits of nanotechnology are countless, the environmental safety concerns needs to be cautiously examined. Nanotechnology improves their performance and adequacy by increasing viability, security and, eventually, lowering social insurance costs. In this review, we highlight the nanotechnological interventions aiming towards sustainability in agricultural and food processing sectors primarily by deploying modified nanoparticles and also emphasized several challenges and their impact on the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. An C, Sun CS, Li N et al (2022) Nanomaterials and nanotechnology for the delivery of agrochemicals: strategies towards sustainable agriculture. J Nanobiotech 20:11. https://doi.org/10.1186/s12951-021-01214-7

    Article  Google Scholar 

  2. Sahoo SK, Panigrahi GK, Sahoo A, Pradhan AK, Dalbehera A (2021) Bio-hydrothermal synthesis of ZnO–ZnFe2O4 nanoparticles using Psidium guajava leaf extract: role in waste water remediation and plant immunity. J Clean Prod 318(128522):1–14

    Google Scholar 

  3. Johnston BF, Mellor JW (1961) The role of agriculture in economic development. Am Econ Rev 51:566–593

    Google Scholar 

  4. Mukhopadhyay SS (2014) Nanotechnology in agriculture: prospects and constraints. Nanotechnol Sci Appl 7:63–71. https://doi.org/10.2147/NSA.S39409

    Article  Google Scholar 

  5. Yunlong C, Smit B (1994) Sustainability in agriculture: a general review. Agric Ecosyst Environ 49:299–307. https://doi.org/10.1016/0167-8809(94)90059-0

    Article  Google Scholar 

  6. Campbell BM, Thornton P, Zougmoré R, van Asten P, Lipper L (2014) Sustainable intensification: what is its role in climate smart agriculture? Curr Opin Environ Sustain 8:39–43. https://doi.org/10.1016/j.cosust.2014.07.002

    Article  Google Scholar 

  7. Sun CQ (2007) Size dependence of nanostructures: impact of bond order deficiency. Prog Solid State Chem 35:1–159. https://doi.org/10.1016/j.progsolidstchem.2006.03.001

    Article  Google Scholar 

  8. Vidotti M, Carvalhal RF, Mendes RK, Ferreira DCM, Kubota LT (2011) Biosensors based on gold nanostructures. J Braz Chem Soc 22:3–20. https://doi.org/10.1590/S0103-50532011000100002

    Article  Google Scholar 

  9. Bonnell DA, Huey BD (2001) Basic principles of scanning probe microscopy. In: Bonnell DA (ed) Scanning probe microscopy and spectroscopy: theory, techniques, and applications. Wiley, New York

    Google Scholar 

  10. Feynman RP (1996) No Ordinary Genius: The Illustrated Richard Feynman. W.W. Norton & Company, New York, NY

    Google Scholar 

  11. Bulovic V, Mandell A, Perlman A (2004) Molecular memory device. US 20050116256, A1

  12. Gibney E (2015) Buckyballs in space solve 100-year-old riddle. Nature News. https://doi.org/10.1038/nature.2015.17987

    Article  Google Scholar 

  13. Pokropivny V, Lohmus R, Hussainova I, Pokropivny A, Vlassov S (2007) Introduction to nanomaterials and nanotechnology. University of Tartu, Tartu, p 225

    Google Scholar 

  14. Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A et al (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612. https://doi.org/10.1021/acs.langmuir.5b03081

    Article  Google Scholar 

  15. Sagadevan S, Periasamy M (2014) Recent trends in nanobiosensors and their applications - a review. Rev Adv Mater Sci 36:62–69

    Google Scholar 

  16. Sahoo SK, Panigrahi GK, Sahoo MK, Arzoo A, Sahoo JK, Sahoo A, Pradhan AK, Dalbehera A (2022) Biological synthesis of GO-MgO nanomaterial using Azadirachta indica leaf extract: a potential bio-adsorbent for removing Cr(VI) ions from aqueous media. Biochem Eng J 177(10872):1–12

    Google Scholar 

  17. Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31–53. https://doi.org/10.2147/NSA.S39406

    Article  Google Scholar 

  18. Kandasamy S, Prema RS (2015) Methods of synthesis of nano particles and its applications. J Chem Pharm Res 7:278–285

    Google Scholar 

  19. Panigrahi GK, Sahoo SK, Sahoo A, Behera S, Sahu SR, Dash A, Satapathy KB (2021) Bioactive molecules from plants: A prospective approach to combat SARS-Cov-2. Adv Tradit Med. https://doi.org/10.1007/s13596-021-00599-y

    Article  Google Scholar 

  20. Kah M (2015) Nanopesticides and nanofertilizers: emerging contaminants or opportunities for risk mitigation? Front Chem 3:64. https://doi.org/10.3389/fchem.2015.00064

    Article  Google Scholar 

  21. Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139. https://doi.org/10.1016/j.scitotenv.2015.01.104

    Article  Google Scholar 

  22. Fraceto LF, Grillo R, de Medeiros GA, Scognamiglio V, Rea G, Bartolucci C (2016) Nanotechnology in agriculture: which innovation potential does it have? Front Environ Sci 4:20. https://doi.org/10.3389/fenvs.2016.00020

    Article  Google Scholar 

  23. Sertova NM (2015) Application of nanotechnology in detection of mycotoxins and in agricultural sector. J Cent Eur Agric 16:117–130. https://doi.org/10.5513/JCEA01/16.2.1597

    Article  Google Scholar 

  24. Viswanathan S, Radecki J (2008) Nanomaterials in electrochemical biosensors for food analysis- a review. Pol J Food Nutr Sci 58:157–164

    Google Scholar 

  25. Pyrzynska K (2011) Carbon nanotubes as sorbents in the analysis of pesticides. Chemosphere 83:1407–1413. https://doi.org/10.1016/j.chemosphere.2011.01.057

    Article  Google Scholar 

  26. Chahine NO, Collette NM, Thomas BC, Genetos DC, Loots GG (2014) Nanocomposite scaffold for chondrocyte growth and cartilage tissue engineering: effects of carbon nanotube surface functionalization. Tissue Eng Part A 20:2305–2315. https://doi.org/10.1089/ten.TEA.2013.0328

    Article  Google Scholar 

  27. Raliya R, Tarafdar JC, Gulecha K, Choudhary K, Ram R, Mal P et al (2013) Review article; scope of nanoscience and nanotechnology in agriculture. J Appl Biol Biotechnol 1:041–044

    Google Scholar 

  28. Panigrahi GK, Sahoo A, Satapathy KB (2021) Insights to Plant Immunity: Defense Signaling to Epigenetics. Physiol Mol Plant Pathol 113(101568):1–7

    Google Scholar 

  29. Panigrahi GK, Satapathy KB (2021) Pseudomonas syringae pv. syringae Infection Orchestrates the Fate of the Arabidopsis J Domain Containing Cochaperone and Decap** Protein Factor 5. Physiol Molecul Plant Pathol 113(101598):1–9

    Google Scholar 

  30. Hajirostamlo B, Mirsaeedghazi N, Arefnia M, Shariati MA, Fard EA (2015) The role of research and development in agriculture and its dependent concepts in agriculture. Asian J Appl Sci Eng 4:245–251. https://doi.org/10.1016/j.cocis.2008.01.005

    Article  Google Scholar 

  31. Camilli L, Pisani C, Gautron E, Scarselli M, Castrucci P, D’Orazio F et al (2014) A three-dimensional carbon nanotube network for water treatment. Nanotechnology 25:65701. https://doi.org/10.1088/0957-4484/25/6/065701

    Article  Google Scholar 

  32. Porter AE, Gass M, Muller K, Skepper JN, Midgley PA, Welland M (2007) Direct imaging of single-walled carbon nanotubes in cells. Nat Nanotechnol 2:713–717. https://doi.org/10.1038/nnano.2007.347

    Article  Google Scholar 

  33. Nima AZ, Lahiani MH, Watanabe F, Xu Y, Khodakovskaya MV, Biris AS (2014) Plasmonically active nanorods for delivery of bio-active agents and high-sensitivity SERS detection in planta. RSC Adv 4:64985–64993. https://doi.org/10.1039/C4RA10358K

    Article  Google Scholar 

  34. Wan Y, Li J, Ren H, Huang J, Yuan H (2014) Physiological investigation of gold nanorods toward watermelon. J Nanosci Nanotechnol 14:6089–6094. https://doi.org/10.1166/jnn.2014.8853

    Article  Google Scholar 

  35. Androvitsaneas P, Young AB, Schneider C, Maier S, Kamp M, Höfling S et al (2016) Charged quantum dot micropillar system for deterministic lightmatter interactions. Phys Rev B 93:241409. https://doi.org/10.1103/physrevb.93.241409

    Article  Google Scholar 

  36. Bakalova R, Zhelev Z, Ohba H, Ishikawa M, Baba Y (2004) Quantum dots as photosensitizers? Nat Biotechnol 22:1360–1361. https://doi.org/10.1038/nbt1104-1360

    Article  Google Scholar 

  37. Konstantatos G, Sargent EH (2009) Solution-processed quantum dot photodetectors. Proc IEEE 97:1666–1683. https://doi.org/10.1109/JPROC.2009.2025612

    Article  Google Scholar 

  38. Das S, Wolfson BP, Tetard L, Tharkur J, Bazata J, Santra S (2015) Effect of N-acetyl cysteine coated CdS:Mn/ZnS quantum dots on seed germination and seedling growth of snow pea (Pisum sativum L.): imaging and spectroscopic studies. Environ Sci 2:203–212. https://doi.org/10.1039/c4en00198b

    Article  Google Scholar 

  39. Ezhilarasi PN, Karthik P, Chhanwal N, Anandharamakrishnan C (2012) Nanoencapsulation techniques for food bioactive components: a Review. Food Bioprocess Technol 6:628–647. https://doi.org/10.1007/s11947-012-0944-0

    Article  Google Scholar 

  40. Rodríguez J, Martín MJ, Ruiz AM, Clares B (2016) Current encapsulation strategies for bioactive oils: from alimentary to pharmaceutical perspectives. Food Res Int 83:41–59. https://doi.org/10.1016/j.foodres.2016.01.032

    Article  Google Scholar 

  41. Ozdemir M, Kemerli T (2016) Innovative applications of micro and nanoencapsulation in food packaging. In: Lakkis JM (ed) Encapsulation and controlled release technologies in food systems. Wiley, Chichester

    Google Scholar 

  42. Couvreur P, Dubernet C, Puisieux F (1995) Controlled drug delivery with nanoparticles: current possibilities and future trends. Eur J Pharm Biopharm 41:2–13

    Google Scholar 

  43. Hildebrand GE, Tack JW (2000) Microencapsulation of peptides and proteins. Int J Pharm 196:173–176. https://doi.org/10.1016/S0378-5173(99)00415-9

    Article  Google Scholar 

  44. Puglisi G, Fresta M, Giammona G, Ventura CA (1995) Influence of the preparation conditions on poly (ethylcyanoacrylate) nanocapsule formation. Int J Pharm 125:283–287. https://doi.org/10.1016/0378-5173(95)00142-6

    Article  Google Scholar 

  45. Haolong L, Yang Y, Yizhan W, Chunyu W, Wen L, Lixin W (2011) Self-assembly and ion-trap** properties of inorganic nanocapsule-surfactant hybrid spheres. Soft Matter 7:2668–2673. https://doi.org/10.1039/c0sm01044h

    Article  Google Scholar 

  46. Pohlmann R, Beck RCR, Lionzo MIZ, Coasta TMH, Benvenutti EV, Re MI et al (2008) Surface morphology of spray-dried nanoparticle-coated microparticles designed as an oral drug delivery system. Braz J Chem Eng 25:389–398

    Article  Google Scholar 

  47. Vartholomeos P, Fruchard M, Ferreira A, Mavroidis C (2011) MRI-guided nanorobotic systems for therapeutic and diagnostic applications. Annu Rev Biomed Eng 13:157–184. https://doi.org/10.1146/annurev-bioeng-071910-124724

    Article  Google Scholar 

  48. Gutiérrez JM, González C, Maestro A, Solè I, Pey CM, Nolla J (2008) Nano-emulsions: new applications and optimization of their preparation. Curr Opin Colloid Interface Sci 13:245–251. https://doi.org/10.1039/C5SM02958A

    Article  Google Scholar 

  49. Anton N, Vandamme TF (2011) Nano-emulsions and micro-emulsions: clarifications of the critical differences. Pharm Res 28:978–985. https://doi.org/10.1007/s11095-010-0309-1

    Article  Google Scholar 

  50. Mason TG, Wilking JN, Meleson K, Chang CB, Graves SM (2006) Nanoemulsions: formation, structure, and physical properties. J Phys Condens Matt 18:R635–R666. https://doi.org/10.1088/0953-8984/18/41/r01

    Article  Google Scholar 

  51. Gupta A, Eral HB, Hatton TA, Doyle PS (2016) Nanoemulsions: formation, properties and applications. SoftMatter 12:2826–2841. https://doi.org/10.1039/e5sm02958a

    Article  Google Scholar 

  52. Asua JM (2002) Miniemulsion polymerization. Prog Polym Sci 27:1283–1346. https://doi.org/10.1016/S0079-6700(02)00010-2

    Article  Google Scholar 

  53. Anton N, Vandamme TF (2009) The universality of low-energy nanoemulsification. Int J Pharm 377:142–147. https://doi.org/10.1016/j.ijpharm.2009.05.014

    Article  Google Scholar 

  54. Tadros TF, Izquierdo P, Esquena J, Solans C (2004) Formation and stability of nanoemulsions. Adv Colloid Interface Sci 108–109:303–318. https://doi.org/10.1016/j.cis.2003.10.023

    Article  Google Scholar 

  55. Sahoo SK, Dhal JP, Panigrahi GK (2020) Magnesium oxide nanoparticles decorated iron oxide nanorods: Synthesis, characterization and remediation of Congo red dye from aqueous media. Compos Commun 22(100496):1–6

    Google Scholar 

  56. Mishra VK, Kumar A (2009) Impact of metal nanoparticles on the plant growth promoting rhizobacteria. Dig J Nanomater Biostruct 4:587–592

    Google Scholar 

  57. Fogel R, Limson J (2016) Develo** biosensors in develo** countries: South Africa as a case study. Biosensors 6:5. https://doi.org/10.3390/bios6010005

    Article  Google Scholar 

  58. Brolo AG (2012) Plasmonics for future biosensors. Nat Photonics 6:709–713. https://doi.org/10.1038/nphoton.2012.266

    Article  Google Scholar 

  59. Rai V, Acharya S, Dey N (2012) Implications of nanobiosensors in agriculture. J Biomater Nanobiotechnol 3:315–324. https://doi.org/10.4236/jbnb.2012.322039

    Article  Google Scholar 

  60. Gruère GP (2012) Implications of nanotechnology growth in food and agriculture in OECD countries. Food Policy 37:191–198. https://doi.org/10.1016/j.jhazmat.2014.05.079

    Article  Google Scholar 

  61. Martirosyan A, Schneider YJ (2014) Engineered nanomaterials in food: implications for food safety and consumer health. Int J Environ Res Public Health 11:5720–5750. https://doi.org/10.3390/ijerph110605720

    Article  Google Scholar 

  62. Biswal SK, Panigrahi GK, Sahoo SK (2020) Green synthesis of Fe2O3-Ag nanocomposite using Psidium guajava leaf extract: An eco-friendly and recyclable adsorbent for remediation of Cr(VI) from aqueous media. Biophys Chem 263(106392):1–8

    Google Scholar 

  63. Ion AC, Ion I, Culetu A (2010) Carbon-based nanomaterials: environmental applications. Univ Politehn Bucharest 38:129–132

    Google Scholar 

  64. Sabir S, Arshad M, Chaudhari SK (2014) Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications. Sci World J 2014:1–8. https://doi.org/10.1155/2014/925494

    Article  Google Scholar 

  65. Floros JD, Newsome R, Fisher W, Barbosa-Cánovas GV, Chen H, Dunne CP et al (2010) Feeding the world today and tomorrow: the importance of food science and technology. Compr Rev Food Sci Food Saf 9:572–599. https://doi.org/10.1111/j.1541-4337.2010.00127.x

    Article  Google Scholar 

  66. Dixit R, Malaviya D, Pandiyan K, Singh UB, Sahu A et al (2015) Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes. Sustainability 7:2189–2212. https://doi.org/10.3390/su7022189

    Article  Google Scholar 

  67. Panigrahi GK, Sahoo A, Satapathy KB (2021) Differential expression of selected Arabidopsis resistant genes under abiotic stress conditions. Plant Science Today 8(4):859–864

    Article  Google Scholar 

  68. Jung HW, Panigrahi GK, Jung G-Y et al (2020) PAMP-triggered immunity involves proteolytic degradation of core nonsense-mediated mRNA decay factors during early defense response. Plant Cell 32(4):1081–1101

    Article  Google Scholar 

  69. Dimkpa CO (2014) Can nanotechnology deliver the promised benefits without negatively impacting soil microbial life? J Basic Microbiol 54:889–904. https://doi.org/10.1002/jobm.201400298

    Article  Google Scholar 

  70. Zhang Q, Han L, **g H, Blom DA, Lin Y, **n HL et al (2016) Facet control of gold nanorods. ACS Nano 10:2960–2974. https://doi.org/10.1021/acsnano.6b00258

    Article  Google Scholar 

  71. Sadeghzadeh B (2013) A review of zinc nutrition and plant breeding. J Soil Sci Plant Nutr 13:905–927. https://doi.org/10.4067/S0718-95162013005000072

    Article  Google Scholar 

  72. Llop J, Estrela-Lopis I, Ziolo RF, González A, Fleddermann J, Dorn M et al (2014) Uptake, biological fate, and toxicity of metal oxide nanoparticles. Part Part Syst Charact 31:24–35. https://doi.org/10.1002/ppsc.201300323

    Article  Google Scholar 

  73. Marzbani P, Afrouzi YM, Omidvar A (2015) The effect of nano-zinc oxide on particleboard decay resistance. Maderas Cienc Technol 17:63–68. https://doi.org/10.4067/s0718-221x2015005000007

    Article  Google Scholar 

  74. Helar G, Chavan A (2015) Synthesis, characterization and stability of gold nanoparticles using the fungus Fusarium oxysporum and its impact on seed. Int J Recent Sci Res 6:3181–3318

    Google Scholar 

  75. Khota LR, Sankarana S, Majaa JM, Ehsania R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70. https://doi.org/10.1016/j.cropro.2012.01.007

    Article  Google Scholar 

  76. Malandrakis AA, Kavroulakis N, Chrysikopoulos CV (2021) Copper nanoparticles against benzimidazole-resistant Monilinia fructicola field isolates. Pestic Biochem Physiol 173:104796

    Article  Google Scholar 

  77. Zhang Y, Chen W, **g M, Liu S, Feng J, Wu H, Zhou Y, Zhang X, Ma Z (2019) Self-assembled mixed micelle loaded with natural pyrethrins as an intelligent nano-insecticide with a novel temperature-responsive release mode. Chem Eng J 361:1381–1391

    Article  Google Scholar 

  78. Bisset NB, Webster GR, Dong YD, Boyd BJ (2019) Understanding the kinetic mixing between liquid crystalline nanoparticles and agrochemical actives. Coll Surf B Biointerf 175:324–332

    Article  Google Scholar 

  79. Yalamalle VR, Tomar BS, Kumar A, Ahammed STP (2019) Polymer coating for higher pesticide use efficiency, seed yield and quality in onion (Allium cepa). Indian J Agric Sci 89:1195–1199

    Google Scholar 

  80. de Oliveira JL, Campos EV, Bakshi M, Abhilash PC, Fraceto LF (2014) Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises. Biotechnol Adv 32:1550–1561. https://doi.org/10.1016/j.biotechadv.2014.10.010

    Article  Google Scholar 

  81. Kah M, Hofmann T (2014) Nanopesticides research: current trends and future priorities. Environ Int 63:224–235. https://doi.org/10.1016/j.envint.2013.11.015

    Article  Google Scholar 

  82. Grillo R, Abhilash PC, Fraceto LF (2016) Nanotechnology applied to bio-encapsulation of pesticides. J Nanosci Nanotechnol 16:1231–1234. https://doi.org/10.1016/j.tifs.2003.10.005

    Article  Google Scholar 

  83. Nuruzzaman M, Rahman MM, Liu Y, Naidu R (2016) Nanoencapsulation, nano-guard for pesticides: a new window for safe application. J Agric Food Chem 64:1447–1483. https://doi.org/10.1021/acs.jafc.5b05214

    Article  Google Scholar 

  84. Gouin S (2004) Microencapsulation: industrial appraisal of existing technologies and trends. Trends Food Sci Technol 15:330–347. https://doi.org/10.1038/nature.2015.17987

    Article  Google Scholar 

  85. Maruyama CR, Guilger M, Pascoli M, Bileshy-José N, Abhilash PC, Fraceto LF et al (2016) Nanoparticles based on chitosan as carriers for the combined herbicides imazapic and imazapyr. Sci Rep 6:23854. https://doi.org/10.1038/srep23854

    Article  Google Scholar 

  86. Jampilek J, Zaruba K, Oravec M, Kunes M, Babula P, Ulbrich P et al (2015) Preparation of silica nanoparticles loaded with nootropics and their in vivo permeation through bloodbrain barrier. BioMed Res Int 2015:812673. https://doi.org/10.1155/2015/812673

    Article  Google Scholar 

  87. Kumar S, Bhanjana G, Sharma A, Sidhu MC, Dilbaghi N (2014) Synthesis, characterization and on field evaluation of pesticide loaded sodium alginate nanoparticles. Carbohydr Polym 101:1061–1067. https://doi.org/10.1016/j.carbpol.2013.10.025

    Article  Google Scholar 

  88. Memarizadeh N, Ghadamyari M, Adeli M, Talebi K (2014) Preparation, characterization and efficiency of nanoencapsulated imidacloprid under laboratory conditions. Ecotoxicol Environ Saf 107:77–83. https://doi.org/10.1016/j.ecoenv.2014.05.009

    Article  Google Scholar 

  89. Sun C, Shu K, Wang W, Ye Z, Liu T, Gao Y et al (2014) Encapsulation and controlled release of hydrophilic pesticide in shell cross-linked nanocapsules containing aqueous core. Int J Pharm 463:108–114. https://doi.org/10.1016/j.ijpharm.2013.12.050

    Article  Google Scholar 

  90. Grillo R, Pereira AE, Nishisaka CS, de Lima R, Oehlke K, Greiner R et al (2014) Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: an environmentally safer alternative for weed control. J Hazard Mater 27:163–171. https://doi.org/10.1016/j.jhazmat.2014.05.079

    Article  Google Scholar 

  91. Saharan V, Mehrotra A, Khatik R, Rawal P, Sharma SS, Pal A (2013) Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. Int J Biol Macromol 62:677–683. https://doi.org/10.1016/j.ijbiomac.2013.10.012

    Article  Google Scholar 

  92. Dilbaghi N, Kaur H, Ahuja M, Kumar S (2013) Evaluation of tropicamideloaded tamarind seed xyloglucan nanoaggregates for ophthalmic delivery. Carbohydr Polym 94:286–291. https://doi.org/10.1016/j.carbpol.2013.01.054

    Article  Google Scholar 

  93. Chevillard A, Angellier-Coussy H, Guillard V, Gontard N, Gastaldi E (2012) Controlling pesticide release via structuring agropolymer and nanoclays based materials. J Hazard Mater 20:32–39. https://doi.org/10.1016/j.jhazmat.2011.11.093

    Article  Google Scholar 

  94. Jerobin J, Sureshkumar RS, Anjali CH, Mukherjee A, Chandrasekaran N (2012) Biodegradable polymer based encapsulation of neem oil nanoemulsion for controlled release of Aza-A. Carbohydr Polym 90:1750–1756. https://doi.org/10.1016/j.carbpol.2012.07.064

    Article  Google Scholar 

  95. Jiang LC, Basri M, Omar D, Rahman MBA, Salleh AB, Zaliha RN et al (2012) Green nano-emulsion intervention for water-soluble glyphosate isopropylamine (IPA) formulations in controlling Eleusine indica (E. indica). Pest Biochem Physiol 102:19–29. https://doi.org/10.1016/j.pestbp.2011.10.004

    Article  Google Scholar 

  96. Silva Mdos S, Cocenza DS, Grillo R, de Melo NF, Tonello PS, de Oliveira LC et al (2011) Paraquat-loaded alginate/chitosan nanoparticles: preparation, characterization and soil sorption studies. J Hazard Mater 190:366–374. https://doi.org/10.1016/j.jhazmat.2011.03.057

    Article  Google Scholar 

  97. Grillo R, Melo NFS, de Lima R, Lourenço RW, Rosa AH, Fraceto LF (2010) Characterization of atrazine-loaded biodegradable poly(hydroxybutyrate-co-hydroxyvalerate) microspheres. J Polym Environ 18:26–32. https://doi.org/10.1166/jnn.2016.12332

    Article  Google Scholar 

  98. Hussein MZ, Yahaya AH, Zainal Z, Kian LH (2005) Nanocomposite-based controlled release formulation of an herbicide, 2,4-dichlorophenoxyacetate incapsulated in zinc-aluminium-layered doublehydroxide. Sci Technol Adv Mater 6:956–962. https://doi.org/10.1016/j.stam.2005.09.004

    Article  Google Scholar 

  99. Siegrist M, Stampfli N, Kastenholz H, Keller C (2008) Perceived risks and perceived benefits of different nanotechnology foods and nanotechnology food packaging. Appetite 51:283–290. https://doi.org/10.1016/j.appet.2008.02.020

    Article  Google Scholar 

  100. Bhushani JA, Anandharamakrishnan C (2014) Electrospinning and electrospraying techniques: potential food based applications. Trends Food Sci Technol 38:21–33. https://doi.org/10.1016/j.tifs.2014.03.004

    Article  Google Scholar 

  101. Ghaani M, Cozzolino CA, Castelli G, Farris S (2016) An overview of the intelligent packaging technologies in the food sector. Trends Food Sci Tech 51:1–11. https://doi.org/10.1016/j.tifs.2016.02.008

    Article  Google Scholar 

  102. Khond VW, Kriplani VM (2016) Effect of nanofluid additives on performances and emissions of emulsified diesel and biodiesel fueled stationary CI engine: a comprehensive review. Renew Sustain Energy Rev 59:1338–1348. https://doi.org/10.1016/j.rser.2016.01.051

    Article  Google Scholar 

  103. Savina E, Karlsen JD, Frandsen RP, Krag LA, Kristensen K, Madsen N (2016) Testing the effect of soak time on catch damage in a coastal gillnetter and the consequences on processed fish quality. Food Control 70:310–317. https://doi.org/10.1016/j.foodcont.2016.05.044

    Article  Google Scholar 

  104. Berekaa MM (2015) Nanotechnology in food industry; advances in food processing, packaging and food Safety. Int J Curr Microbiol App Sci 4:345–357

    Google Scholar 

  105. Bumbudsanpharoke N, Ko S (2015) Nano-food packaging: an overview of market, migration research, and safety regulations. J Food Sci 80:R910–R923. https://doi.org/10.1111/1750-3841.12861

    Article  Google Scholar 

  106. Liu Y, He L, Mustapha A, Li H, Hu ZQ, Lin M (2009) Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. J Appl Microbiol 107:1193–1201. https://doi.org/10.1111/j.1365-2672.2009.04303.x

    Article  Google Scholar 

  107. Wang L, Hu C, Shao L (2017) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomed 12:1227–1249. https://doi.org/10.2147/IJN.S121956

    Article  Google Scholar 

  108. Li H, Shan C, Zhang Y, Cai J, Zhang W, Pan B (2016) Arsenate adsorption by hydrous ferric oxide nanoparticles embedded in cross-linked anion exchanger: effect of the host pore structure. ACS Appl Mater Interfaces 8:3012–3020. https://doi.org/10.1021/acsami.5b09832

    Article  Google Scholar 

  109. Rana S, Kalaichelvan PT (2013) Ecotoxicity of nanoparticles. ISRN Toxicol 2013:574648. https://doi.org/10.1155/2013/574648

    Article  Google Scholar 

  110. Du W, Tan W, Peralta-Videa JR, Gardea-Torresdey JL, Ji R, Yin Y et al (2017) Interaction of metal oxide nanoparticles with higher terrestrial plants: Physiological and biochemical aspects. Plant Physiol Biochem 110:210–225. https://doi.org/10.1016/j.plaphy.2016.04.024

    Article  Google Scholar 

  111. Tripathi DK, Singh S, Singh S, Pandey R, Singh VP et al (2016) An overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytotoxicity. Plant Physiol Biochem 110(2):12. https://doi.org/10.1016/j.plaphy.2016.07.030

    Article  Google Scholar 

  112. Tripathi DK, Singh S, Singh VP, Prasad SM, Chauhan DK, Dubey NK (2016) Silicon nanoparticles more efficiently alleviate arsenate toxicity than silicon in maize cultiver and hybrid differing in arsenate tolerance. Front Environ Sci 4:46. https://doi.org/10.3389/fenvs.2016.00046

    Article  Google Scholar 

  113. Tripathi DK, Singh S, Srivastava PK, Singh VP, Singh S et al (2017) Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiol Biochem 110:167–177. https://doi.org/10.1016/j.plaphy.2016.06.015

    Article  Google Scholar 

  114. Tripathi DK, Mishra RK, Singh S, Singh S, Vishwakarma K, Sharma S et al (2017) Nitric oxide ameliorates zinc oxide nanoparticles phytotoxicity in wheat seedlings: implication of the ascorbate-glutathione cycle. Front Plant Sci 8:1. https://doi.org/10.3389/fpls.2017.00001

    Article  Google Scholar 

  115. Tripathi DK, Tripathi A, Shweta SS, Singh Y, Vishwakarma K, Yadav G et al (2017) Uptake, accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: a concentric review. Front Microbiol 8:07. https://doi.org/10.3389/fmicb.2017.00007

    Article  Google Scholar 

  116. Tripathi DK, Singh S, Singh VP, Prasad SM, Dubey NK, Chauhan DK (2017) Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings. Plant Physiol Biochem 110:70–81. https://doi.org/10.1016/j.plaphy.2016.06.026

    Article  Google Scholar 

  117. Patra JK, Baek KH (2017) Antibacterial activity and synergistic antibacterial potential of biosynthesized silver nanoparticles against foodborne pathogenic bacteria along with its anticandidal and antioxidant effects. Front Microbiol 8:167. https://doi.org/10.3389/fmicb.2017.00167

    Article  Google Scholar 

  118. Rana S, Kalaichelvan PT (2011) Antibacterial effects of metal nanoparticles. Adv Biotech 2:21–23

    Google Scholar 

  119. Hoffmann M, Holtze EM, Wiesner MR (2007) Reactive oxygen species generation on nanoparticulate material. In: Wiesner MR, Bottero JY (eds) Environmental nanotechnology. Applications and impacts of nanomaterials. McGraw Hill, New York, pp 155–203

    Google Scholar 

  120. Kovochich M, **a T, Xu J, Yeh JI, Nel AE (2005) Principles and procedures to assess nanoparticles. Environ Sci Technol 39:1250–1256

    Google Scholar 

  121. Vannini C, Domingo G, Onelli E, De Mattia F, Bruni I, Marsoni M et al (2014) Phytotoxic and genotoxic effects of silver nanoparticles exposure on germinating wheat seedlings. J Plant Physiol 171:1142–1148. https://doi.org/10.1016/j.jplph.2014.05.002

    Article  Google Scholar 

  122. Sayes CM, Fortner JD, Guo W, Lyon D, Boyd AM, Ausman KD, Tao YJ et al (2004) The differential cytotoxicity of water-soluble fullerenes. Nano Lett 4:1881–1887. https://doi.org/10.1002/btpr.707

    Article  Google Scholar 

  123. Daroczi B, Kari G, McAleer MF, Wolf JC, Rodeck U, Dicker AP (2006) In vivo radioprotection by the fullerene nanoparticle DF-1 as assessed in a zebra fish model. Clin Cancer Res 12:7086–7091. https://doi.org/10.1158/1078-0432.CCR-06-0514

    Article  Google Scholar 

  124. Venkatachalam P, Jayaraj M, Manikandan R, Geetha N, Rene ER, Sharma NC et al (2017) Zinc oxide nanoparticles (ZnONPs) alleviate heavy metalinduced toxicity in Leucaena leucocephala seedlings: a physiochemical analysis. Plant Physiol Biochem 110:59–69. https://doi.org/10.1016/j.plaphy.2016.08.022

    Article  Google Scholar 

  125. Cox A, Venkatachalam P, Sahi S, Sharma N (2017) Reprint of: silver and titanium dioxide nanoparticle toxicity in plants: a review of current research. Plant Physiol Biochem 110:33–49. https://doi.org/10.1016/j.plaphy.2016.08.007

    Article  Google Scholar 

  126. Singh S, Vishwakarma K, Singh S, Sharma S, Dubey NK, Singh VK et al (2017) Understanding the plant and nanoparticle interface at transcriptomic and proteomic level: a concentric overview. Plant Gene 11:265–272. https://doi.org/10.1016/j.plgene.2017.03.006

    Article  Google Scholar 

  127. Tripathi DK, Singh S, Singh S, Dubey NK, Chauhan DK (2016) Impact of nanoparticles on photosynthesis: challenges and opportunities. Mater Focus 5(405):411. https://doi.org/10.1166/mat.2016.1327

    Article  Google Scholar 

  128. Bystrzejewska-Piotrowska G, Asztemborska M, Steborowski R, Polkowska- Motrenko H, Danko J, Ryniewicz B (2012) Application of neutron activation for investigation of Fe3O4 nanoparticles accumulation by plants. Nukleonika 57:427–430

    Google Scholar 

  129. Abbas SS, Haneef M, Lohani M, Tabassum H, Khan AF (2016) Nanomaterials used as a plants growth enhancer: an update. Int J Pharm Sci Rev Res 5:17–23

    Google Scholar 

  130. Chakravarthy AK, Bhattacharyya A, Shashank PR, Epidi TT, Doddabasappa B, Mandal SK (2012) DNA-tagged nano gold: a new tool for the control of the armyworm, Spodoptera litura Fab. (Lepidoptera: Noctuidae). Afr J Biotechnol 11:9295–9301. https://doi.org/10.5897/AJB11.883

    Article  Google Scholar 

  131. Perlatti B, Bergo PLS, Silva MFG, Fernandes JB, Forim MR (2013) Polymeric nanoparticle-based insecticides: a controlled release purpose for agrochemicals. In: Trdan S (ed) Insecticides-development of safer and more effective technologies. InTech, Rijeka, pp 523–550

    Google Scholar 

  132. Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158:122–132. https://doi.org/10.1016/j.toxlet.2005.03.003

    Article  Google Scholar 

Download references

Acknowledgements

Authors thank the administration and management of Centurion University of Technology and Management, Odisha, India, for their heartfelt support. We apologize to all colleagues whose work could not be discussed owing to space limitations.

Funding

The present study was supported by the Centurion University of Technology and Management, Odisha, India. Authors (Gagan Kumar Panigrahi and Shraban Kumar Sahoo would like to thank and acknowledge Vice Chancellor, Centurion University of Technology and Management, Odisha, India, for providing financial support for this study (Seed money grant approval letter no: CUTM/VC Office/45).

Author information

Authors and Affiliations

Authors

Contributions

All the authors have substantial contribution for the preparation of the manuscript. GKP and KBS conceived the idea. AS, SKS, JS and GKP performed data curation and writing. AS, SKS, KBS and GKP performed review and editing. All the authors have read and approved the final manuscript before submission.

Corresponding authors

Correspondence to Shraban Kumar Sahoo or Gagan Kumar Panigrahi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

It is a review article. No ethics approval is required.

Human and animal rights

It is a review article. No animals were used in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, A., Sethi, J., Satapathy, K.B. et al. Nanotechnology for precision and sustainable agriculture: recent advances, challenges and future implications. Nanotechnol. Environ. Eng. 8, 775–787 (2023). https://doi.org/10.1007/s41204-022-00277-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41204-022-00277-7

Keywords

Navigation