Nanotechnology: An Innovative Tool to Enhance Crop Production

  • Chapter
  • First Online:
Nanobiotechnology in Agriculture

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

  • 675 Accesses

Abstract

With the explosion of population pressure and growing limitation in arable land and water resources, the only way to increase the resource use efficiency is the development of agriculture using efficient modern technologies in a sustainable manner. Agriculture as a source of food, feed, and fiber has always been increasingly important in a world of diminishing resources and with an ever-increasing global population. Among various crop improvement tools, nanotechnology holds an eminent position in smart agriculture due to its eco-friendly nature. It has the potential to revolutionize agricultural systems by precise farming techniques and therefore may emerge as a possible solution for increasing crop yields. Nanotechnology has provided promising approaches to modernize the agricultural sector with novel tools ranging from nano-fertilizers to nano-sensors. Smart nano-sensors and delivery systems emerge as modern diagnostic tools to revolutionize the agro-industry. The application of engineered nanoparticles, carbon- or metal-based may be the solution for increasing the yield to combat the food crisis in near future. The potential of agro-nanotechnology needs to be explored at large scale, as it has multi-dimensional approach to transform the agriculture sector. Here we will discuss the role of nanotechnology as an innovative tool to revolutionize the agro-business sector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aditya N, Patnakar S, Madhusudan B, Murthy R, Souto E (2010) Artemether loaded lipid nanoparticles produced by modified thin film hydration: pharmacokinetics, toxicological and in vivo antimalarial activity. Eur J Pharm Sci 40:448–455

    Article  CAS  PubMed  Google Scholar 

  • Alidoust D, Isoda A (2013) Effect of gamma Fe2O3 nanoparticles on photosynthetic characteristic of soybean (Glycine max (L.) Merr.): foliar spray versus soil amendment. Acta Physiol Plant 35(12):3365–3375

    Article  CAS  Google Scholar 

  • AL-Oubaidi HKM, Kasid NM (2015) Increasing phenolic and flavonoids compounds of Cicer arietinum L. from embryo explant using titanium dioxide nanoparticle in vitro. World J Pharm Res 4(11):1791–1799

    CAS  Google Scholar 

  • Arora S, Sharma P, Kumar S, Nayan R, Khanna PK, Zaidi MGH (2012) Gold nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul 66:303–339

    Article  CAS  Google Scholar 

  • Asghari GH, Mostajeran A, Sadeghi H, Nakhaei A (2012) Effect of salicylic acid and silver nitrate on taxol production in Taxus baccata. J Med Plants 11(8):74–82

    Google Scholar 

  • Bakhtiari M, Moaveni P, Sani B (2015) The effect of iron nanoparticles spraying time and concentration on wheat. Biol Forum 7(1):679–683

    CAS  Google Scholar 

  • Barrena R, Casals E, Colon J, Font X, Sanchez A, Puntes V (2009) Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 75:850–857

    Article  CAS  PubMed  Google Scholar 

  • Batsmanova LM, Gonchar LM, Taran NY, Okanenko AA (2013) Using a colloidal solution of metal nanoparticles as micronutrient fertiliser for cereals. In: Proceedings of the international conference on nanomaterials: applications and properties, Crimea, Ukraine, Proc NAP2, 04NABM14

    Google Scholar 

  • Burman U, Saini M, Kumar P (2013) Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings. Toxicol Environ Chem 95(4):605–612

    Article  CAS  Google Scholar 

  • Cañas JE, Long M, Nations S, Vadan R, Dai L, Luo M, Ambikapathi R, Lee EH, Olszyk D (2008) Effects of functionalized and non-functionalized single-walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem 27(9):1922

    Article  PubMed  Google Scholar 

  • Chen HC, Roco MC, Son JB, Jiang S, Larson CA, Gao Q (2013) Global nanotechnology development from 1991 to 2012: patents, scientific publications, and effect of NSF funding. J Nanopart Res 15:1951

    Article  Google Scholar 

  • Fakruddin MD, Hossain Z, Afroz H (2012) Prospects and applications of nanobiotechnology: a medical perspective. J Nanobiotechnol 10:1–8

    Article  CAS  Google Scholar 

  • Feizi H, Kamali M, Jafari L, RezvaniMoghaddam P (2013) Phytotoxicity and stimulatory impacts of nanosized and bulk titanium dioxide on fennel (Foeniculum vulgare Mill). Chemosphere 91(4):506–511

    Article  CAS  PubMed  Google Scholar 

  • Gardea-Torresdey JL, Rico CM, White JC (2014) Trophic transfer, transformation, and impact of engineered nanomaterials in terrestrial environments. Environ Sci Technol 48:2526–2540

    Article  CAS  PubMed  Google Scholar 

  • Ghanati F, Bakhtiarian S (2014) Effect of methyl jasmonate and silver nanoparticles on production of secondary metabolites by Calendula officinalis L (Asteraceae). Trop J Pharm Res 13(11):1783–1789

    Article  CAS  Google Scholar 

  • Ghasemi B, Hosseini R, Nayeri FD (2015) Effects of cobalt nanoparticles on artemisinin production and gene expression in Artemisia annua. Turk J Bot 39:769–777

    Article  CAS  Google Scholar 

  • Gopinath K, Gowri S, Karthika V, Arumugam A (2014) Green synthesis of gold nanoparticles from fruit extract of Terminalia arjuna, for the enhanced seed germination activity of Gloriosa superba. J Nanostruct Chem 4:1–11

    Google Scholar 

  • Hafeez A, Razzaq A, Mahmood T, Jhanzab HM (2015) Potential of copper nanoparticles to increase growth and yield of wheat. J Nanosci Adv Technol 1(1):6–11

    Article  Google Scholar 

  • Heiras-Palazuelos MJ, Ochoa-Lugo MI, Gutierrez-Dorado R, Lopez Valenzuela JA, Mora-Rochin S, Milan Carrillo J et al (2013) Technological properties, antioxidant activity and total phenolic and flavonoid content of pigmented chickpea (Cicer arietinum L.) cultivars. Int J Food Sci Nutr 64:69–76

    Article  CAS  PubMed  Google Scholar 

  • Husen A, Siddiqi KS (2014) Carbon and fullerene nanomaterials in plants system. J Nanotechnol 12:1–10

    Google Scholar 

  • Kabera JN, Semana E, Mussa AR, He X (2014) Plant secondary metabolites: biosynthesis classification, function and pharmacological properties. J Pharm Pharmacol 2:377–392

    Google Scholar 

  • Khodakovskaya MV, Kim B-S, Kim JN et al (2013) Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small 9:115–123

    Article  CAS  PubMed  Google Scholar 

  • Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handry RD, Lyon DY, Manendra S, McKaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate bioavailability, and effects. Environ Toxicol Chem 27:1825–1851

    Article  CAS  PubMed  Google Scholar 

  • Kole C, Kole P, Randunu KM, Choudhary P, Podila R, Ke PC (2013) Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnol 13:37

    Article  PubMed  PubMed Central  Google Scholar 

  • Krishnaraj C, Jagan EG, Ramachandran R, Abirami SM, Mohan N, Kalaichelvan PT (2012) Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. Plan growth metabolism. Process Biochem 47:651–658

    Article  CAS  Google Scholar 

  • Kumar V, Guleria P, Kumar V, Yadav SK (2013) Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Sci Total Environ 461:462–468

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Yuan L, Yue X, Zheng Z, Tang Z (2008) Recent advances in nanosensors for organophosphate pesticide detection. Adv Powder Technol 19:419–441

    Article  CAS  Google Scholar 

  • Liu Q, Chen B, Wang Q, Shi X, **ao Z, Lin J, Fang X (2009) Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett 9:1007–1010

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408(16):3053–3061

    Article  CAS  PubMed  Google Scholar 

  • Misra P, Shukla PK, Pramanik K, Gautam S, Kole C (2016) Nanotechnology for crop improvement. In: Kole C, Kumar D, Khodakovskaya M (eds) Plant nanotechnology. Springer, Cham, pp 219–256

    Chapter  Google Scholar 

  • Naderi MR, Danesh-Shahraki A (2013) Nanofertilizers and their roles in sustainable agriculture. Int J Agric Crop Sci 5(19):2229–2232

    Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163

    Article  CAS  Google Scholar 

  • Ngo QB, Dao TH, Nguyen HC, Tran XT, Nguyen TV, Khuu TD, Huynh TH (2014) Effects of nanocrystalline powders (Fe, Co and Cu) on the germination, growth, crop yield and product quality of soybean (Vietnamese species DT-51). Adv Nat Sci Nanosci Nanotechnol 5:1–7

    Article  CAS  Google Scholar 

  • Pirzadah TB, Malik B, Maqbool T, Rehman RU (2019) Development of nano-bioformulations of nutrients for sustainable agriculture. In: Prasad R, Kumar V, Kumar M, Choudhary D (eds) Nanobiotechnology in bioformulations. Nanotechnology in the life sciences. Springer, Cham, pp 381–394

    Chapter  Google Scholar 

  • Pokhrel LR, Dubey B (2013) Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. Sci Total Environ 452:321–332

    Article  PubMed  CAS  Google Scholar 

  • Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous- mobilizing enzyme secretion and gum contents in cluster bean (Cyamopsis tetragonoloba L.). Agric Res 2(1):48–57

    Article  CAS  Google Scholar 

  • Razzaq A, Ammara R, Jhanzab HM, Mahmood T, Hafeez A, Hussain S (2016) A novel nanomaterial to enhance growth and yield of wheat. J Nanosci Technol 2(1):55–58

    Google Scholar 

  • Rico CM, Lee SC, Rubenecia R, Mukherjee A, Hong J, Peralta-Videa JR, Gardea-Torresdey JL (2014) Cerium oxide nanoparticles impact yield and modify nutritional parameters in wheat (Triticum aestivum L.). J Agric Food Chem 62:9669–9675

    Article  CAS  PubMed  Google Scholar 

  • Salama HMH (2012) Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). Int Res J Biotechnol 3(10):190–197

    Google Scholar 

  • Scott N, Chen H (2002) Nanoscale science and engineering for agriculture and food systems. National planning workshop, 18–19 Nov 2002, Washington DC, USA. Available from: http://www.nseafs.cornell.edu/web.roadmap.pdf

  • Seif SM, Sorooshzadeh A, Rezazadehs H, Naghdibadi HA (2011) Effect of nanosilver and silver nitrate on seed yield of borage. J Med Plants Res 5(2):171–175

    Google Scholar 

  • Serag MF, Kaji N, Venturelli E, Okamoto Y, Terasaka K, Tokeshi M, Mizukami H, Ugent KB, Bianco A, Baba Y (2011) A functional platform for controlled subcellular distribution of carbon nanotubes. ACS Nano 5:9264–9270

    Article  CAS  PubMed  Google Scholar 

  • Serag MF, Braeckmans K, Habuchi S, Kaji N, Bianco A, Baba Y (2012) Spatiotemporal visualization of subcellular dynamics of carbon nanotubes. Nano Lett 12:6145–6151

    Article  CAS  PubMed  Google Scholar 

  • Shah V, Belozerova I (2009) Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollut 197:143–148

    Article  CAS  Google Scholar 

  • Sharafi E, Nekoei SMK, Fotokian MH, Davoodi D, Mirzaei HH, Hasanloo T (2013) Improvement of hypericin and hyperforin production using zinc and iron nano-oxides as elicitors in cell suspension culture of St John’s wort (Hypericum perforatum L.). J Med Plants By-Prod 2:177–184

    Google Scholar 

  • Sharma P, Bhatt D, Zaidi MG, Saradhi PP, Khanna PK, Arora S (2012) Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl Biochem Biotechnol 167:2225–2233

    Article  CAS  PubMed  Google Scholar 

  • Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479

    Article  CAS  PubMed  Google Scholar 

  • Taran NY, Gonchar OM, Lopatko KG, Batsmanova LM, Patyka MV, Volkogon MV (2014) The effect of colloidal solution of molybdenum nanoparticles on the microbial composition in rhizosphere of Cicer arietinum L. Nanoscale Res Lett 9:289

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tiwari DK, Dasgupta-Schubert N, Villasenor Cendejas LM, Villegas J, Carreto Montoya L, Borjas Garcia SE (2014) Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. Appl Nanosci 2:577–591

    Article  CAS  Google Scholar 

  • Villagarcia H, Dervishi E, Silva K, Biris AS, Khodakovskaya MV (2012) Surface chemistry of carbon nanotubes impacts the growth and expression of water channel protein in tomato plants. Small 8:2328–2334

    Article  CAS  PubMed  Google Scholar 

  • Yarizade K, Hosseini R (2015) Expression analysis of ADS, DBR2, ALDH1 and SQS genes in Artemisia vulgaris hairy root culture under nano cobalt and nano zinc elicitation. Ext J Appl Sci 3(3):69–76

    Google Scholar 

  • Yin L, Cheng Y, Espinasse B, Colman BP, Auffan M, Wiesner M et al (2011) More than the ions: the effect of silver nanoparticles on Lolium multiflorum. Environ Sci Technol 45:2360–2367

    Article  CAS  PubMed  Google Scholar 

  • Yuvakumar R, Elango V, Rajendran V, Kannan NS, Prabu P (2011) Influence of nanosilica powder on the growth of maize crop (Zea mays L.). Int J Green Nanotechnol 3(1):180–190

    Article  CAS  Google Scholar 

  • Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Element Res 104:83–91

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jan, A., Pirzadah, T.B., Malik, B. (2020). Nanotechnology: An Innovative Tool to Enhance Crop Production. In: Hakeem, K., Pirzadah, T. (eds) Nanobiotechnology in Agriculture. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-39978-8_9

Download citation

Publish with us

Policies and ethics

Navigation