Log in

In Vivo Genome Engineering for the Treatment of Muscular Dystrophies

  • Genome Editing (Y Fan & J Chan, Section Editors)
  • Published:
Current Stem Cell Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Muscular dystrophies (MDs) are a heterogeneous collection of inherited disorders which cause progressive muscle loss and weakness/hypotonia. Owing to the genetic root of MDs, CRISPR/Cas9 genome editing has been investigated as a possible therapy, with significant advancements having been made. This review aims to provide an overview of recent progress on the in vivo utilization of CRISPR/Cas9 in MD animal models.

Recent Findings

Three primary methods for correcting MD with CRISPR/Cas9 exist: restoration of the full-length protein, restoration of a truncated but partially functional protein, and modulation of gene expression. All these approaches have been (DMD) models with varying degrees of success. In congenital muscular dystrophy type 1A (MDC1A) mice, full-length protein restoration and disease modifier upregulation strategies significantly improved the phenotype. Lastly, efficient elimination of pathogenic CTG repeats via CRISPR/Cas9 was achieved in myotonic dystrophy type 1 (DM1) mice. Delivery of CRISPR machinery into MD animals was frequently accomplished with adeno-associated viruses (AAVs), which currently significantly outperform nanoparticle-based delivery. The targeting of satellite cells in vivo by AAVs has been evaluated by several groups in DMD mice, yielding conflicting results which require clarification.

Summary

Partial or nearly complete phenotypic rescue has been achieved in DMD, MDC1A, and DM1 animals with numerous CRISPR/Cas9 strategies. While considerable work will be necessary to advance CRISPR/Cas9 genome editing past preclinical stages, its therapeutic potential for MD is extremely promising and warrants the investment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Dowling JJ, Gonorazky HD, Cohn RD, Campbell C. Treating pediatric neuromuscular disorders: the future is now. Am J Med Genet A. 2018;176(4):804–41. https://doi.org/10.1002/ajmg.a.38418.

    Article  PubMed  Google Scholar 

  2. Shieh PB. Muscular dystrophies and other genetic myopathies. Neurol Clin. 2013;31(4):1009–29. https://doi.org/10.1016/j.ncl.2013.04.004.

    Article  PubMed  Google Scholar 

  3. Crispi V, Matsakas A. Duchenne muscular dystrophy: genome editing gives new hope for treatment. Postgrad Med J. 2018;94(1111):296–304. https://doi.org/10.1136/postgradmedj-2017-135377.

    Article  PubMed  CAS  Google Scholar 

  4. Bladen CL, Salgado D, Monges S, Foncuberta ME, Kekou K, Kosma K, et al. The TREAT-NMD DMD global database: analysis of more than 7,000 Duchenne muscular dystrophy mutations. Hum Mutat. 2015;36(4):395–402. https://doi.org/10.1002/humu.22758.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Wong TWY, Cohn RD. Therapeutic applications of CRISPR/Cas for Duchenne muscular dystrophy. Curr Gene Ther. 2017;17(4):301–8. https://doi.org/10.2174/1566523217666171121165046.

    Article  PubMed  CAS  Google Scholar 

  6. Lapidos KA, Kakkar R, McNally EM. The dystrophin glycoprotein complex: signaling strength and integrity for the sarcolemma. Circ Res. 2004;94(8):1023–31. https://doi.org/10.1161/01.RES.0000126574.61061.25.

    Article  PubMed  CAS  Google Scholar 

  7. Gumerson JD, Michele DE. The dystrophin-glycoprotein complex in the prevention of muscle damage. J Biomed Biotechnol. 2011;2011:210797–13. https://doi.org/10.1155/2011/210797.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Koenig M, Beggs AH, Moyer M, Scherpf S, Heindrich K, Bettecken T, et al. The molecular basis for Duchenne versus Becker muscular dystrophy: correlation of severity with type of deletion. Am J Hum Genet. 1989;45(4):498–506.

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Liechti-Gallati S, Koenig M, Kunkel LM, Frey D, Boltshauser E, Schneider V, et al. Molecular deletion patterns in Duchenne and Becker type muscular dystrophy. Hum Genet. 1989;81(4):343–8. https://doi.org/10.1007/bf00283688.

    Article  PubMed  CAS  Google Scholar 

  10. Verhaart IEC, ‘t Hoen PAC, Roos M, Vroom E, Workshop P. Meeting on data sharing for Duchenne 21-22 March 2019 Amsterdam, the Netherlands. Neuromuscul Disord. 2019;29(10):800–10. https://doi.org/10.1016/j.nmd.2019.08.010.

    Article  PubMed  Google Scholar 

  11. Gawlik KI, Durbeej M. Skeletal muscle laminin and MDC1A: pathogenesis and treatment strategies. Skelet Muscle. 2011;1(1):9. https://doi.org/10.1186/2044-5040-1-9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Geranmayeh F, Clement E, Feng LH, Sewry C, Pagan J, Mein R, et al. Genotype-phenotype correlation in a large population of muscular dystrophy patients with LAMA2 mutations. Neuromuscul Disord. 2010;20(4):241–50. https://doi.org/10.1016/j.nmd.2010.02.001.

    Article  PubMed  Google Scholar 

  13. Aumailley M. The laminin family. Cell Adhes Migr. 2013;7(1):48–55. https://doi.org/10.4161/cam.22826.

    Article  Google Scholar 

  14. LoRusso S, Weiner B, Arnold WD. Myotonic dystrophies: targeting therapies for multisystem disease. Neurotherapeutics. 2018;15(4):872–84. https://doi.org/10.1007/s13311-018-00679-z.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Barthelemy F, Wein N. Personalized gene and cell therapy for Duchenne muscular dystrophy. Neuromuscul Disord. 2018;28(10):803–24. https://doi.org/10.1016/j.nmd.2018.06.009.

    Article  PubMed  Google Scholar 

  16. Robinson-Hamm JN, Gersbach CA. Gene therapies that restore dystrophin expression for the treatment of Duchenne muscular dystrophy. Hum Genet. 2016;135(9):1029–40. https://doi.org/10.1007/s00439-016-1725-z.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Duan D, Systemic AAV. Micro-dystrophin gene therapy for Duchenne muscular dystrophy. Mol Ther. 2018;26(10):2337–56. https://doi.org/10.1016/j.ymthe.2018.07.011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Rodrigues M, Yokota T. An overview of recent advances and clinical applications of exon skip** and splice modulation for muscular dystrophy and various genetic diseases. Methods Mol Biol. 18282018:31–55.

  19. McDonald CM, Campbell C, Torricelli RE, Finkel RS, Flanigan KM, Goemans N, et al. Ataluren in patients with nonsense mutation Duchenne muscular dystrophy (ACT DMD): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;390(10101):1489–98. https://doi.org/10.1016/S0140-6736(17)31611-2.

    Article  PubMed  CAS  Google Scholar 

  20. Conboy I, Murthy N, Etienne J, Robinson Z. Making gene editing a therapeutic reality. F1000Res. 2018;7. https://doi.org/10.12688/f1000research.16106.1.

  21. Sahel DK, Mittal A, Chitkara D. CRISPR/Cas system for genome editing: progress and prospects as a therapeutic tool. J Pharmacol Exp Ther. 2019;370(3):725–35. https://doi.org/10.1124/jpet.119.257287.

    Article  PubMed  CAS  Google Scholar 

  22. Doudna JA. The promise and challenge of therapeutic genome editing. Nature. 2020;578(7794):229–36. https://doi.org/10.1038/s41586-020-1978-5.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Khan SH. Genome-editing technologies: concept, pros, and cons of various genome-editing techniques and bioethical concerns for clinical application. Mol Ther Nucleic Acids. 2019;16:326–34. https://doi.org/10.1016/j.omtn.2019.02.027.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Wang H, La Russa M, Qi LS. CRISPR/Cas9 in genome editing and beyond. Annu Rev Biochem. 2016;85:227–64. https://doi.org/10.1146/annurev-biochem-060815-014607As this reference discusses the HDR and NHEJ repair systems in-depth, which are the fundamental mechanisms for Cas9 correction of MDs.

    Article  PubMed  CAS  Google Scholar 

  25. Wiedenheft B, Sternberg SH, Doudna JA. RNA-guided genetic silencing systems in bacteria and archaea. Nature. 2012;482(7385):331–8. https://doi.org/10.1038/nature10886.

    Article  PubMed  CAS  Google Scholar 

  26. Shmakov S, Smargon A, Scott D, Cox D, Pyzocha N, Yan W, et al. Diversity and evolution of class 2 CRISPR-Cas systems. Nat Rev Microbiol. 2017;15(3):169–82. https://doi.org/10.1038/nrmicro.2016.184.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Cebrian-Serrano A, Davies B. CRISPR-Cas orthologues and variants: optimizing the repertoire, specificity and delivery of genome engineering tools. Mamm Genome. 2017;28(7–8):247–61. https://doi.org/10.1007/s00335-017-9697-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Pawelczak KS, Gavande NS, VanderVere-Carozza PS, Turchi JJ. Modulating DNA repair pathways to improve precision genome engineering. ACS Chem Biol. 2018;13(2):389–96. https://doi.org/10.1021/acschembio.7b00777.

    Article  PubMed  CAS  Google Scholar 

  29. Hsu MN, Chang YH, Truong VA, Lai PL, Nguyen TKN, Hu YC. CRISPR technologies for stem cell engineering and regenerative medicine. Biotechnol Adv. 2019;37(8):107447. https://doi.org/10.1016/j.biotechadv.2019.107447.

    Article  PubMed  CAS  Google Scholar 

  30. Scully R, Panday A, Elango R, Willis NA. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat Rev Mol Cell Biol. 2019;20(11):698–714. https://doi.org/10.1038/s41580-019-0152-0.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Pini V, Morgan JE, Muntoni F, O'Neill HC. Genome editing and muscle stem cells as a therapeutic tool for muscular dystrophies. Curr Stem Cell Rep. 2017;3(2):137–48. https://doi.org/10.1007/s40778-017-0076-6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Kemaladewi DU, Maino E, Hyatt E, Hou H, Ding M, Place KM, et al. Correction of a splicing defect in a mouse model of congenital muscular dystrophy type 1A using a homology-directed-repair-independent mechanism. Nat Med. 2017;23(8):984–9. https://doi.org/10.1038/nm.4367They utilized a unique strategy to correct an intronic donor splice site mutation through NHEJ.

    Article  PubMed  CAS  Google Scholar 

  33. Wojtal D, Kemaladewi DU, Malam Z, Abdullah S, Wong TW, Hyatt E, et al. Spell checking nature: versatility of CRISPR/Cas9 for develo** treatments for inherited disorders. Am J Hum Genet. 2016;98(1):90–101. https://doi.org/10.1016/j.ajhg.2015.11.012.

    Article  PubMed  CAS  Google Scholar 

  34. Lattanzi A, Duguez S, Moiani A, Izmiryan A, Barbon E, Martin S, et al. Correction of the exon 2 duplication in DMD myoblasts by a single CRISPR/Cas9 system. Mol Ther Nucleic Acids. 2017;7:11–9. https://doi.org/10.1016/j.omtn.2017.02.004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Chen M, Qi LS. Repurposing CRISPR system for transcriptional activation. Adv Exp Med Biol. 2017;983:147–57.

    Article  CAS  PubMed  Google Scholar 

  36. Duchene BL, Cherif K, Iyombe-Engembe JP, Guyon A, Rousseau J, Ouellet DL, et al. CRISPR-induced deletion with SaCas9 restores dystrophin expression in dystrophic models in vitro and in vivo. Mol Ther. 2018;26(11):2604–16. https://doi.org/10.1016/j.ymthe.2018.08.010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 2013;152(5):1173–83. https://doi.org/10.1016/j.cell.2013.02.022.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Rees HA, Liu DR. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet. 2018;19(12):770–88. https://doi.org/10.1038/s41576-018-0059-1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Molla KA, Yang Y. CRISPR/Cas-mediated base editing: technical considerations and practical applications. Trends Biotechnol. 2019;37(10):1121–42. https://doi.org/10.1016/j.tibtech.2019.03.008.

    Article  PubMed  CAS  Google Scholar 

  40. Long C, Amoasii L, Mireault AA, McAnally JR, Li H, Sanchez-Ortiz E, et al. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science. 2016;351(6271):400–3. https://doi.org/10.1126/science.aad5725.

    Article  PubMed  CAS  Google Scholar 

  41. Nelson CE, Hakim CH, Ousterout DG, Thakore PI, Moreb EA, Castellanos Rivera RM, et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science. 2016;351(6271):403–7. https://doi.org/10.1126/science.aad5143.

    Article  PubMed  CAS  Google Scholar 

  42. Tabebordbar M, Zhu K, Cheng JKW, Chew WL, Widrick JJ, Yan WX, et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science. 2016;351(6271):407–11. https://doi.org/10.1126/science.aad5177.

    Article  PubMed  CAS  Google Scholar 

  43. Iyombe-Engembe JP, Ouellet DL, Barbeau X, Rousseau J, Chapdelaine P, Lague P, et al. Efficient restoration of the dystrophin gene reading frame and protein structure in DMD myoblasts using the CinDel method. Mol Ther Nucleic Acids. 2016;5:e283. https://doi.org/10.1038/mtna.2015.58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Xu L, Park KH, Zhao L, Xu J, El Refaey M, Gao Y, et al. CRISPR-mediated genome editing restores dystrophin expression and function in mdx mice. Mol Ther. 2016;24(3):564–9. https://doi.org/10.1038/mt.2015.192.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Bengtsson NE, Hall JK, Odom GL, Phelps MP, Andrus CR, Hawkins RD, et al. Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy. Nat Commun. 2017;8:14454. https://doi.org/10.1038/ncomms14454Because in this reference they used various strategies for genome editing and directly compared their differing efficiencies. Amongst others, they compared NHEJ with HDR, and SpCas9 with SaCas9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Perrin A, Rousseau J, Tremblay JP. Increased expression of laminin subunit alpha 1 chain by dCas9-VP160. Mol Ther Nucleic Acids. 2017;6:68–79. https://doi.org/10.1016/j.omtn.2016.11.004.

    Article  PubMed  CAS  Google Scholar 

  47. Young CS, Mokhonova E, Quinonez M, Pyle AD, Spencer MJ. Creation of a novel humanized dystrophic mouse model of Duchenne muscular dystrophy and application of a CRISPR/Cas9 gene editing therapy. J Neuromuscul Dis. 2017;4(2):139–45. https://doi.org/10.3233/JND-170218.

    Article  PubMed  PubMed Central  Google Scholar 

  48. El Refaey M, Xu L, Gao Y, Canan BD, Adesanya TMA, Warner SC, et al. In vivo genome editing restores dystrophin expression and cardiac function in dystrophic mice. Circ Res. 2017;121(8):923–9. https://doi.org/10.1161/CIRCRESAHA.117.310996.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Lee K, Conboy M, Park HM, Jiang F, Kim HJ, Dewitt MA, et al. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat Biomed Eng. 2017;1:889–901. https://doi.org/10.1038/s41551-017-0137-2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Amoasii L, Long C, Li H, Mireault AA, Shelton JM, Sanchez-Ortiz E, et al. Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy. Sci Transl Med. 2017;9(418). https://doi.org/10.1126/scitranslmed.aan8081.

  51. Liao HK, Hatanaka F, Araoka T, Reddy P, Wu MZ, Sui Y, et al. In vivo target gene activation via CRISPR/Cas9-mediated trans-epigenetic modulation. Cell. 2017;171(7):1495–507 e15. https://doi.org/10.1016/j.cell.2017.10.025.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Koo T, Lu-Nguyen NB, Malerba A, Kim E, Kim D, Cappellari O, et al. Functional rescue of dystrophin deficiency in mice caused by frameshift mutations using Campylobacter jejuni Cas9. Mol Ther. 2018;26(6):1529–38. https://doi.org/10.1016/j.ymthe.2018.03.018.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Ryu SM, Koo T, Kim K, Lim K, Baek G, Kim ST, et al. Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nat Biotechnol. 2018;36(6):536–9. https://doi.org/10.1038/nbt.4148.

    Article  PubMed  CAS  Google Scholar 

  54. Amoasii L, Hildyard JCW, Li H, Sanchez-Ortiz E, Mireault A, Caballero D, et al. Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy. Science. 2018;362(6410):86–91. https://doi.org/10.1126/science.aau1549This is the first study applying the CRISPR/Cas9 system in a large DMD animal model (dogs), intramuscularly as well as systemically.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Min YL, Li H, Rodriguez-Caycedo C, Mireault AA, Huang J, Shelton JM, et al. CRISPR-Cas9 corrects Duchenne muscular dystrophy exon 44 deletion mutations in mice and human cells. Sci Adv. 2019;5(3):eaav4324. https://doi.org/10.1126/sciadv.aav4324.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Amoasii L, Li H, Zhang Y, Min YL, Sanchez-Ortiz E, Shelton JM, et al. In vivo non-invasive monitoring of dystrophin correction in a new Duchenne muscular dystrophy reporter mouse. Nat Commun. 2019;10(1):4537. https://doi.org/10.1038/s41467-019-12335-x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Moretti A, Fonteyne L, Giesert F, Hoppmann P, Meier AB, Bozoglu T, et al. Somatic gene editing ameliorates skeletal and cardiac muscle failure in pig and human models of Duchenne muscular dystrophy. Nat Med. 2020;26(2):207–14. https://doi.org/10.1038/s41591-019-0738-2As this reference showed correction of DMD via systemic AAV Cas9 treatment in a DMD pig model via exon deletion and that AAV9 could be more efficiently transduced by muscle using an easy to apply dendrimer coating.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Mata Lopez S, Balog-Alvarez C, Vitha S, Bettis AK, Canessa EH, Kornegay JN, et al. Challenges associated with homologous directed repair using CRISPR-Cas9 and TALEN to edit the DMD genetic mutation in canine Duchenne muscular dystrophy. PLoS One. 2020;15(1):e0228072. https://doi.org/10.1371/journal.pone.0228072.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Zhang Y, Li H, Min YL, Sanchez-Ortiz E, Huang J, Mireault AA, et al. Enhanced CRISPR-Cas9 correction of Duchenne muscular dystrophy in mice by a self-complementary AAV delivery system. Sci Adv. 2020;6(8):eaay6812. https://doi.org/10.1126/sciadv.aay6812For demonstrating that scAAVs are capable of negatingspecific loss of sgRNA AAVs, solving a problem which would necessitate significantly higher doses for dual AAV MD approaches with Cas9 (which many will need to be).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Gee P, Lung MSY, Okuzaki Y, Sasakawa N, Iguchi T, Makita Y, et al. Extracellular nanovesicles for packaging of CRISPR-Cas9 protein and sgRNA to induce therapeutic exon skip**. Nat Commun. 2020;11(1):1334. https://doi.org/10.1038/s41467-020-14957-y.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Hakim CH, Wasala NB, Nelson CE, Wasala LP, Yue Y, Louderman JA, et al. AAV CRISPR editing rescues cardiac and muscle function for 18 months in dystrophic mice. JCI Insight. 2018;3(23). https://doi.org/10.1172/jci.insight.124297.

  62. Nelson CE, Wu Y, Gemberling MP, Oliver ML, Waller MA, Bohning JD, et al. Long-term evaluation of AAV-CRISPR genome editing for Duchenne muscular dystrophy. Nat Med. 2019;25(3):427–32. https://doi.org/10.1038/s41591-019-0344-3As this reference sheds light on the potentially serious concern of AAV integration at Cas9 DSBs, a phenomena which was not known or given much attention beforehand.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Xu L, Lau YS, Gao Y, Li H, Han R. Life-long AAV-mediated CRISPR genome editing in dystrophic heart improves cardiomyopathy without causing serious lesions in mdx mice. Mol Ther. 2019;27(8):1407–14. https://doi.org/10.1016/j.ymthe.2019.05.001.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Nance ME, Shi R, Hakim CH, Wasala NB, Yue Y, Pan X, et al. AAV9 edits muscle stem cells in normal and dystrophic adult mice. Mol Ther. 2019;27(9):1568–85. https://doi.org/10.1016/j.ymthe.2019.06.012.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  65. Kemaladewi DU, Bassi PS, Erwood S, Al-Basha D, Gawlik KI, Lindsay K, et al. A mutation-independent approach for muscular dystrophy via upregulation of a modifier gene. Nature. 2019;572(7767):125–30. https://doi.org/10.1038/s41586-019-1430-xAs this is the first study systemically overexpressing a disease modifier to improve and effectively reverse disease progression in an MD animal.

    Article  PubMed  CAS  Google Scholar 

  66. Pinto BS, Saxena T, Oliveira R, Mendez-Gomez HR, Cleary JD, Denes LT, et al. Impeding transcription of expanded microsatellite repeats by deactivated Cas9. Mol Cell. 2017;68(3):479–90 e5. https://doi.org/10.1016/j.molcel.2017.09.033.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Lo Scrudato M, Poulard K, Sourd C, Tome S, Klein AF, Corre G, et al. Genome editing of expanded CTG repeats within the human DMPK gene reduces nuclear RNA foci in the muscle of DM1 mice. Mol Ther. 2019;27(8):1372–88. https://doi.org/10.1016/j.ymthe.2019.05.021.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Kemaladewi DU, Cohn RD. Exon snip** in Duchenne muscular dystrophy. Trends Mol Med. 2016;22(3):187–9. https://doi.org/10.1016/j.molmed.2016.01.007.

    Article  PubMed  CAS  Google Scholar 

  69. Lim KRQ, Yoon C, Yokota T. Applications of CRISPR/Cas9 for the treatment of Duchenne muscular dystrophy. J Pers Med. 2018;8(4). https://doi.org/10.3390/jpm8040038.

  70. Min YL, Bassel-Duby R, Olson EN. CRISPR correction of Duchenne muscular dystrophy. Annu Rev Med. 2019;70:239–55. https://doi.org/10.1146/annurev-med-081117-010451.

    Article  PubMed  CAS  Google Scholar 

  71. Boroviak K, Fu B, Yang F, Doe B, Bradley A. Revealing hidden complexities of genomic rearrangements generated with Cas9. Sci Rep. 2017;7(1):12867. https://doi.org/10.1038/s41598-017-12740-6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Park CY, Kim DH, Son JS, Sung JJ, Lee J, Bae S, et al. Functional correction of large factor VIII gene chromosomal inversions in hemophilia A patient-derived iPSCs using CRISPR-Cas9. Cell Stem Cell. 2015;17(2):213–20. https://doi.org/10.1016/j.stem.2015.07.001.

    Article  PubMed  CAS  Google Scholar 

  73. Ifuku M, Iwabuchi KA, Tanaka M, Lung MSY, Hotta A. Restoration of dystrophin protein expression by exon skip** utilizing CRISPR-Cas9 in myoblasts derived from DMD patient iPS cells. Methods Mol Biol. 1828;2018:191–217. https://doi.org/10.1007/978-1-4939-8651-4_12.

    Article  CAS  Google Scholar 

  74. Zhang Y, Long C, Li H, McAnally JR, Baskin KK, Shelton JM, et al. CRISPR-Cpf1 correction of muscular dystrophy mutations in human cardiomyocytes and mice. Sci Adv. 2017;3(4):e1602814. https://doi.org/10.1126/sciadv.1602814.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Saunier M, Bonnemann CG, Durbeej M, Allamand V, Consortium CMDAM. 212th ENMC international workshop: animal models of congenital muscular dystrophies, Naarden, the Netherlands, 29-31 May 2015. Neuromuscul Disord. 2016;26(3):252–9. https://doi.org/10.1016/j.nmd.2016.02.002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Cheng AW, Wang H, Yang H, Shi L, Katz Y, Theunissen TW, et al. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res. 2013;23(10):1163–71. https://doi.org/10.1038/cr.2013.122.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Tinsley JM, Fairclough RJ, Storer R, Wilkes FJ, Potter AC, Squire SE, et al. Daily treatment with SMTC1100, a novel small molecule utrophin upregulator, dramatically reduces the dystrophic symptoms in the mdx mouse. PLoS One. 2011;6(5):e19189. https://doi.org/10.1371/journal.pone.0019189.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Gawlik K, Miyagoe-Suzuki Y, Ekblom P, Takeda S, Durbeej M. Laminin alpha1 chain reduces muscular dystrophy in laminin alpha2 chain deficient mice. Hum Mol Genet. 2004;13(16):1775–84. https://doi.org/10.1093/hmg/ddh190.

    Article  PubMed  CAS  Google Scholar 

  79. Gomes-Pereira M, Cooper TA, Gourdon G. Myotonic dystrophy mouse models: towards rational therapy development. Trends Mol Med. 2011;17(9):506–17. https://doi.org/10.1016/j.molmed.2011.05.004.

    Article  PubMed  CAS  Google Scholar 

  80. Crudele JM, Chamberlain JS. AAV-based gene therapies for the muscular dystrophies. Hum Mol Genet. 2019;28(R1):R102–R7. https://doi.org/10.1093/hmg/ddz128As this reference is an excellent, detail-oriented review for AAV-based gene therapies for MDs.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  81. Wang D, Zhang F, Gao G. CRISPR-based therapeutic genome editing: strategies and in vivo delivery by AAV vectors. Cell. 2020;181(1):136–50. https://doi.org/10.1016/j.cell.2020.03.023.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  82. Buning H, Schmidt M. Adeno-associated vector toxicity-to be or not to be? Mol Ther. 2015;23(11):1673–5. https://doi.org/10.1038/mt.2015.182.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Wang D, Zhong L, Nahid MA, Gao G. The potential of adeno-associated viral vectors for gene delivery to muscle tissue. Expert Opin Drug Deliv. 2014;11(3):345–64. https://doi.org/10.1517/17425247.2014.871258.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. McCarty DM. Self-complementary AAV vectors; advances and applications. Mol Ther. 2008;16(10):1648–56. https://doi.org/10.1038/mt.2008.171.

    Article  PubMed  CAS  Google Scholar 

  85. Nance ME, Hakim CH, Yang NN, Duan D. Nanotherapy for Duchenne muscular dystrophy. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2018;10(2). https://doi.org/10.1002/wnan.1472.

  86. Glass Z, Li Y, Xu Q. Nanoparticles for CRISPR-Cas9 delivery. Nat Biomed Eng. 2017;1(11):854–5. https://doi.org/10.1038/s41551-017-0158-x.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Wells DJ. What is the level of dystrophin expression required for effective therapy of Duchenne muscular dystrophy? J Muscle Res Cell Motil. 2019;40(2):141–50. https://doi.org/10.1007/s10974-019-09535-9.

    Article  PubMed  Google Scholar 

  88. Hoffman E. Variable dystrophin content within myofibers, between myofibers, and between regions of muscles: determining the level of dystrophin that makes a clinical impact in BMD and manifesting carriers of DMD.

  89. Pawlikowski B, Pulliam C, Betta ND, Kardon G, Olwin BB. Pervasive satellite cell contribution to uninjured adult muscle fibers. Skelet Muscle. 2015;5:42. https://doi.org/10.1186/s13395-015-0067-1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Dumont NA, Wang YX, von Maltzahn J, Pasut A, Bentzinger CF, Brun CE, et al. Dystrophin expression in muscle stem cells regulates their polarity and asymmetric division. Nat Med. 2015;21(12):1455–63. https://doi.org/10.1038/nm.3990.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Arnett AL, Konieczny P, Ramos JN, Hall J, Odom G, Yablonka-Reuveni Z, et al. Adeno-associated viral (AAV) vectors do not efficiently target muscle satellite cells. Mol Ther Methods Clin Dev. 2014;1:14038. https://doi.org/10.1038/mtm.2014.38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Goldstein JM, Tabebordbar M, Zhu K, Wang LD, Messemer KA, Peacker B, et al. In situ modification of tissue stem and progenitor cell genomes. Cell Rep. 2019;27(4):1254–64 e7. https://doi.org/10.1016/j.celrep.2019.03.105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Braun S, Thioudellet C, Rodriguez P, Ali-Hadji D, Perraud F, Accart N, et al. Immune rejection of human dystrophin following intramuscular injections of naked DNA in mdx mice. Gene Ther. 2000;7(17):1447–57. https://doi.org/10.1038/sj.gt.3301261.

    Article  PubMed  CAS  Google Scholar 

  94. Ferrer A, Wells KE, Wells DJ. Immune responses to dystropin: implications for gene therapy of Duchenne muscular dystrophy. Gene Ther. 2000;7(17):1439–46. https://doi.org/10.1038/sj.gt.3301259.

    Article  PubMed  CAS  Google Scholar 

  95. Lochmuller H, Petrof BJ, Pari G, Larochelle N, Dodelet V, Wang Q, et al. Transient immunosuppression by FK506 permits a sustained high-level dystrophin expression after adenovirus-mediated dystrophin minigene transfer to skeletal muscles of adult dystrophic (mdx) mice. Gene Ther. 1996;3(8):706–16.

    PubMed  CAS  Google Scholar 

  96. Mendell JR, Campbell K, Rodino-Klapac L, Sahenk Z, Shilling C, Lewis S, et al. Dystrophin immunity in Duchenne's muscular dystrophy. N Engl J Med. 2010;363(15):1429–37. https://doi.org/10.1056/NEJMoa1000228.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Bowles DE, McPhee SW, Li C, Gray SJ, Samulski JJ, Camp AS, et al. Phase 1 gene therapy for Duchenne muscular dystrophy using a translational optimized AAV vector. Mol Ther. 2012;20(2):443–55. https://doi.org/10.1038/mt.2011.237.

    Article  PubMed  CAS  Google Scholar 

  98. Buchlis G, Podsakoff GM, Radu A, Hawk SM, Flake AW, Mingozzi F, et al. Factor IX expression in skeletal muscle of a severe hemophilia B patient 10 years after AAV-mediated gene transfer. Blood. 2012;119(13):3038–41. https://doi.org/10.1182/blood-2011-09-382317.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Hamilton H, Gomos J, Berns KI, Falck-Pedersen E. Adeno-associated virus site-specific integration and AAVS1 disruption. J Virol. 2004;78(15):7874–82. https://doi.org/10.1128/JVI.78.15.7874-7882.2004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Dutheil N, Yoon-Robarts M, Ward P, Henckaerts E, Skrabanek L, Berns KI, et al. Characterization of the mouse adeno-associated virus AAVS1 ortholog. J Virol. 2004;78(16):8917–21. https://doi.org/10.1128/JVI.78.16.8917-8921.2004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Suzuki K, Tsunekawa Y, Hernandez-Benitez R, Wu J, Zhu J, Kim EJ, et al. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature. 2016;540(7631):144–9. https://doi.org/10.1038/nature20565.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Yao X, Wang X, Hu X, Liu Z, Liu J, Zhou H, et al. Homology-mediated end joining-based targeted integration using CRISPR/Cas9. Cell Res. 2017;27(6):801–14. https://doi.org/10.1038/cr.2017.76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019;576(7785):149–57. https://doi.org/10.1038/s41586-019-1711-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Boraschi D, Italiani P, Palomba R, Decuzzi P, Duschl A, Fadeel B, et al. Nanoparticles and innate immunity: new perspectives on host defence. Semin Immunol. 2017;34:33–51. https://doi.org/10.1016/j.smim.2017.08.013.

    Article  PubMed  CAS  Google Scholar 

  105. Boraschi D, Costantino L, Italiani P. Interaction of nanoparticles with immunocompetent cells: nanosafety considerations. Nanomedicine (Lond). 2012;7(1):121–31. https://doi.org/10.2217/nnm.11.169.

    Article  CAS  Google Scholar 

  106. Duan D. Duchenne muscular dystrophy gene therapy: lost in translation? Res Rep Biol. 2011;2011(2):31–42. https://doi.org/10.2147/RRB.S13463.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

The Cohn lab members are gratefully acknowledged for their input in this study. We would specifically like to thank Teija Bily, Eleonora Maino, and Dwi Kemaladewi for their valuable feedback on this manuscript.

Funding

This work was funded by the Canadian Institutes of Health Research (R.D.C. and E.A.I.), the McArthur family (R.D.C.), Jesse’s Journey (R.D.C.), Duchenne UK (R.D.C.), Duchenne Research Fund (R.D.C.), and the Michael Hyatt Foundation (R.D.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgueni A. Ivakine.

Ethics declarations

Conflict of interest

Monika Kustermann, Matthew J. Rok, Ronald D. Cohn, and Evgueni A. Ivakine declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of Topical Collection on Genome Editing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kustermann, M., Rok, M.J., Cohn, R.D. et al. In Vivo Genome Engineering for the Treatment of Muscular Dystrophies. Curr Stem Cell Rep 6, 52–66 (2020). https://doi.org/10.1007/s40778-020-00173-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40778-020-00173-3

Keywords

Navigation