Repurposing CRISPR System for Transcriptional Activation

  • Chapter
  • First Online:
RNA Activation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 983))

Abstract

In recent years, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system has become the most popular one for genome editing. When the nuclease domains of Cas9 protein are mutated into deactivated form (dCas9), CRISPR/dCas9 still retains the ability to bind the targeted DNA sequence, but loses the endonuclease cleavage activity. Taking advantage of the characteristics of this engineered nuclease inactive Cas9, the CRISPR/dCas system has been repurposed into versatile RNA-guided, DNA-targeting platforms, such as genome imaging, gene regulation, and epigenetic modification. Specifically, fusion of dCas9 with activation domains allows specific and efficient transcriptional activation on a genome-wide scale among diverse organisms. The purpose of this chapter is to review most important the recently published literature on CRISPR/dCas9-based transcriptional activation systems. Compared with the conventional approaches for enhancement of the expression of specific genes of interest, CRISPR/Cas9-based system has emerged as a promising technology for genome regulation, allowing specificity, convenience, robustness, and scalability for endogenous gene activation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 171.19
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 171.19
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Balboa D, Weltner J, Eurola S et al (2015) Conditionally stabilized dCas9 activator for controlling gene expression in human cell reprogramming and differentiation. Stem Cell Rep 5:448–459. doi:10.1016/j.stemcr.2015.08.001

    Article  CAS  Google Scholar 

  2. Bikard D, Jiang W, Samai P et al (2013) Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res 41:7429–7437. doi:10.1093/nar/gkt520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Black JB, Adler AF, Wang H-G et al (2016) Targeted epigenetic remodeling of endogenous loci by CRISPR/Cas9-based transcriptional activators directly converts fibroblasts to neuronal cells. Cell Stem Cell 19:406–414. doi:10.1016/j.stem.2016.07.001

    Article  CAS  PubMed  Google Scholar 

  4. Chakraborty S, Ji H, Kabadi AM et al (2014) A CRISPR/Cas9-based system for reprogramming cell lineage specification. Stem Cell Rep 3:940–947. doi:10.1016/j.stemcr.2014.09.013

    Article  CAS  Google Scholar 

  5. Chavez A, Scheiman J, Vora S et al (2015) Highly efficient Cas9-mediated transcriptional programming. Nat Methods 12:326–328. doi:10.1038/nmeth.3312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chavez A, Tuttle M, Pruitt BW et al (2016) Comparison of Cas9 activators in multiple species. Nat Methods 13:563–567. doi:10.1038/nmeth.3871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen B, Gilbert LA, Cimini BA et al (2013) Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155:1479–1493. doi:10.1016/j.cell.2013.12.001

  8. Cheng AW, Wang H, Yang H et al (2013) Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res 23:1163–1171. doi:10.1038/cr.2013.122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823. doi:10.1126/science.1231143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dominguez AA, Lim WA, Qi LS (2016) Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation. Nat Rev Mol Cell Biol 17:5–15. doi:10.1038/nrm.2015.2

    Article  CAS  PubMed  Google Scholar 

  11. Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096. doi:10.1126/science.1258096

    Article  PubMed  Google Scholar 

  12. Gasiunas G, Barrangou R, Horvath P, Siksnys V (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A 109:E2579–E2586. doi:10.1073/pnas.1208507109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gilbert LA, Larson MH, Morsut L et al (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154:442–451. doi:10.1016/j.cell.2013.06.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gilbert LA, Horlbeck MA, Adamson B et al (2014) Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159:647–661. doi:10.1016/j.cell.2014.09.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hilton IB, D’Ippolito AM, Vockley CM et al (2015) Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol 33:510–517. doi:10.1038/nbt.3199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jiang F, Doudna JA (2015) The structural biology of CRISPR-Cas systems. Curr Opin Struct Biol 30:100–111. doi:10.1016/j.sbi.2015.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. **ek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821. doi:10.1126/science.1225829

    Article  CAS  PubMed  Google Scholar 

  18. Kearns NA, Genga RMJ, Enuameh MS et al (2014) Cas9 effector-mediated regulation of transcription and differentiation in human pluripotent stem cells. Development 141:219–223. doi:10.1242/dev.103341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kearns NA, Pham H, Tabak B et al (2015) Functional annotation of native enhancers with a Cas9-histone demethylase fusion. Nat Methods 12:401–403. doi:10.1038/nmeth.3325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Konermann S, Brigham MD, Trevino AE et al (2015) Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517:583–588. doi:10.1038/nature14136

    Article  CAS  PubMed  Google Scholar 

  21. Maeder ML, Linder SJ, Cascio VM et al (2013) CRISPR RNA-guided activation of endogenous human genes. Nat Methods 10:977–979. doi:10.1038/nmeth.2598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826. doi:10.1126/science.1232033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Perez-Pinera P, Kocak DD, Vockley CM et al (2013) RNA-guided gene activation by CRISPR–Cas9-based transcription factors. Nat Methods 10:973–976. doi:10.1038/nmeth.2600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Qi LS, Larson MH, Gilbert LA et al (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–1183. doi:10.1016/j.cell.2013.02.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sternberg SH, Redding S, **ek M et al (2014) DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507:62–67. doi:10.1038/nature13011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tanenbaum ME, Gilbert LA, Qi LS et al (2014) A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159:635–646. doi:10.1016/j.cell.2014.09.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Waddington CH (1957) The strategy ofthe genes. Allen, London

    Google Scholar 

  28. **ong X, Chen M, Lim WA et al (2016) CRISPR/Cas9 for human genome engineering and disease research. Annu Rev Genomics Hum Genet 17:131–154. doi:10.1146/annurev-genom-083115-022258

    Article  CAS  PubMed  Google Scholar 

  29. Zalatan JG, Lee ME, Almeida R et al (2015) Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 160:339–350. doi:10.1016/j.cell.2014.11.052

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Stanley Qi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Chen, M., Qi, L.S. (2017). Repurposing CRISPR System for Transcriptional Activation. In: Li, LC. (eds) RNA Activation. Advances in Experimental Medicine and Biology, vol 983. Springer, Singapore. https://doi.org/10.1007/978-981-10-4310-9_10

Download citation

Publish with us

Policies and ethics

Navigation