Log in

Effect of Poly(Vinylidene Difluoride) Content on Thermal Reaction and Combustion Performance of MnO2-Al Nanothermite

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The application of fluoropolymers in energetic materials has attracted increasing attention. The effect of poly(vinylidene difluoride) (PVDF) content on thermal reaction and combustion performance of MnO2-Al nanothermite was reported. Nanothermite samples were prepared by electrospray with the content of PVDF from 0 wt.% to 30 wt.%. Thermal reaction processes influenced by PVDF content were tested by simultaneous thermal analysis (TG-DSC). Finally, ignition threshold tests were designed, and combustion processes were recorded. The results showed that the components of nanothermite materials were evenly distributed and stable. The content of PVDF had a significant influence on thermal reaction process, which is divided into four stages. Ignition threshold was represented by value of instantaneous ignition current. With the increase of PVDF content, ignition threshold decreased first and then tended to a stable value. Besides, PVDF content had important effects on the combustion speed of the samples. This work has practical significance for designing thermite-based ignition propellant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are available upon request.

References

  1. M. Badgujar, M. Talawar, S. Asthana, et al., J. Hazard. Mater. 151, 289 (2008).

    Article  Google Scholar 

  2. J. Wang, S. Chen, W. Wang, et al., Chem. Eng. J. 431, 133491 (2022).

    Article  Google Scholar 

  3. J. Wang, Z. Guo, S. Chen, et al., Adv. Powder Technol. 34, 103976 (2023).

    Article  Google Scholar 

  4. M. Polis, A. Stolarczyk, K. Glosz, et al., Materials. 15, 3215 (2022).

    Article  Google Scholar 

  5. C.-L. Yeh and Y.-C. Chen, Crystals 10, 210 (2020).

    Article  Google Scholar 

  6. X. Guo, T. Liang, M.L. Islam, et al., Molecules 28, 2520 (2023).

    Article  Google Scholar 

  7. L.L. Wang, Z.A. Munir, and Y.M. Maximov, J. Mater. Sci. 28, 3693 (1993).

    Article  Google Scholar 

  8. C. Yu, W. Zhang, Y. Gao, et al., Chem. Eng. J. 338, 99 (2018).

    Article  Google Scholar 

  9. X. Ke, X. Zhou, H. Gao, et al., Mater. Des. 140, 179 (2018).

    Article  Google Scholar 

  10. W.M. Wang, H. Li, M. Zhang, et al., Fuel 314, 123141 (2022).

    Article  Google Scholar 

  11. S. Yan, G.Q. Jian, and M.R. Zachariah, ACS Appl. Mater. Interfaces 4, 6432 (2012).

    Article  Google Scholar 

  12. C. Rossi, A. Estève, and P. Vashishta, J. Phys. Chem. Solids 71, 57 (2010).

    Article  Google Scholar 

  13. C. Wan, Z.Q. Guo, W.Z. Zhang, et al., Combust. Flame 247, 112480 (2023).

    Article  Google Scholar 

  14. A.N. Ali, S.F. Son, M.A. Hiskey, et al., J. Propul. Power 20, 120 (2004).

    Article  Google Scholar 

  15. S.K. Valluri, M. Schoenitz, and E. Dreizin, Def. Technol. 15, 1 (2019).

    Article  Google Scholar 

  16. B. Feng, X. Fang, Y.C. Li, et al., Cent. Eur. J. Energet. Mater. 13, 989 (2016).

    Article  Google Scholar 

  17. X.C. Xu, Q.C. Zhang, H.J. Fang, et al., Trans. Nonferrous Met. Soc. China 33, 683 (2023).

    Article  Google Scholar 

  18. E.L. Tang, C. Liu, Y.F. Han, et al., Int. Commun. Heat Mass Transfer 127, 105517 (2021).

    Article  Google Scholar 

  19. H.Y. Wang, M. Rehwoldt, D.J. Kline, et al., Combust. Flame 201, 181 (2019).

    Article  Google Scholar 

  20. C. Huang, G.Q. Jian, J.B. DeLisio, et al., Adv. Eng. Mater. 17, 95 (2015).

    Article  Google Scholar 

  21. H.Y. Wang, J.B. DeLisio, S. Holdren, et al., Adv. Eng. Mater. 20, 1700547 (2018).

    Article  Google Scholar 

  22. H.Y. Wang, S. Holdren, and M.R. Zachariah, Combust. Flame 197, 120 (2018).

    Article  Google Scholar 

  23. J. McCollum, A.M. Morey, and S.T. Iacono, Mater. Des. 134, 64 (2017).

    Article  Google Scholar 

  24. E.A. Lebedeva, I.L. Tutubalina, V.A. Val’tsifer, et al., Combust. Explos. Shock Waves 48, 694 (2012).

    Article  Google Scholar 

  25. Z. Jiang, S.F. Li, F.Q. Zhao, et al., Propellants, Explos. Pyrotech. 31, 139 (2006).

    Article  Google Scholar 

  26. C. Huang, H.T. Yang, Y.C. Li, et al., Anal. Lett. 48, 2011 (2015).

    Article  Google Scholar 

  27. X.Y. Li, C. Huang, H.T. Yang, et al., J. Therm. Anal. Calorim. 124, 899 (2016).

    Article  Google Scholar 

  28. J.X. Song, T. Guo, W. Ding, et al., RSC Adv. 9, 25266 (2019).

    Article  Google Scholar 

  29. S. Mahmoodi, P. Hamedi, S. Zhong, et al., PCCP. 24, 17577 (2022).

    Article  Google Scholar 

  30. W.M. Dose, and S.W. Donne, Mater. Sci. Eng. B. 176, 1169 (2011).

    Article  Google Scholar 

  31. J.X. Song, X. Fang, T. Guo, et al., J. Braz. Chem. Soc. 29, 404 (2018).

    Google Scholar 

  32. J. Songa, M. Liu, X. Ma, et al., J. Alloys Compd. 962, 171208 (2023).

    Article  Google Scholar 

  33. Y. Gao, W. Zhu, T. Wang, et al., J. Phys. Chem. C. 126, 11058 (2022).

    Article  Google Scholar 

  34. D. Olsen, K. Uhlenhake, M. Gomez, et al., AIP Adv. 13, 115210 (2023).

    Article  Google Scholar 

Download references

Funding

This research was funded by Science and Technology on Applied Physical Chemistry Laboratory, Grant No. WDYX22614260210 and Qin Chuangyuan talent project in Shanxi Province, Grant No. QCYRCXM-2022-274.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiushi Yan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Li, S., Song, J. et al. Effect of Poly(Vinylidene Difluoride) Content on Thermal Reaction and Combustion Performance of MnO2-Al Nanothermite. JOM 76, 3823–3831 (2024). https://doi.org/10.1007/s11837-024-06598-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-024-06598-z

Navigation