Log in

Thermal reaction properties of aluminum/copper (II) oxide/poly(vinylidene fluoride) nanocomposite

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal reaction properties of the aluminum nanoparticles/copper (II) oxide nanoparticles/poly(vinylidene fluoride) (Al-NPs/CuO-NPs/PVDF) nanocomposite (mass ratio of Al-NPs/CuO-NPs/PVDF = 20/60/20) were investigated by means of thermogravimetry–differential scanning calorimetry–mass spectrometry (TG/DSC-MS) and X-ray diffraction (XRD) analysis. Al-NPs/PVDF (mass ratio of Al-NPs/PVDF = 50/50) and CuO-NPs/PVDF (mass ratio of CuO-NPs/PVDF = 75/25) nanocomposites were also prepared as a comparison. It is observed that PVDF in the Al-NPs/PVDF nanocomposite acts as an oxidizer. The fluorine ions/fluorinated gases formed at elevated temperatures react with the Al2O3 shell leading to the formation of aluminum fluoride (AlF3). The oxide shell is degraded from the reaction between fluoride ions and Al2O3, leaving the core Al available for reaction with fluorine ions/fluorinated gases. H +2 (m/z = 2), OH+ (m/z = 17), H2O+ (m/z = 18), HF+ (m/z = 20), CF+ (m/z = 31) and CH2F+ (m/z = 33) fragments were detected in the gaseous products. For CuO-NPs/PVDF nanocomposite, oxygen was released due to the decomposition of CuO to Cu2O and then Cu metal, oxidizing hydrocarbon groups in PVDF. Species of OH+ (m/z = 17), H2O+ (m/z = 18), CO +2 (m/z = 44), C2H2F+ (m/z = 45) and HF+ (m/z = 20) were detected in the gaseous products. The final reduction product of CuO is Cu metal. It is observed that PVDF in the Al-NPs/CuO-NPs/PVDF nanocomposite acts as both oxidizer and reducer in the thermal decomposition. Below 550 °C, PVDF is oxidized by CuO-NPs and oxidizing Al-NPs at the same time, resulting mass reduction. After 550 °C, the remaining Al-NPs and copper (I)/copper (II) oxide will proceed the exothermic solid-state thermite reaction. OH+ (m/z = 17), H2O+ (m/z = 18), CO +2 (m/z = 44), C2H2F+ (m/z = 45) and HF+ (m/z = 20) were the main products of the decomposition of Al-NPs/CuO-NPs/PVDF nanocomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sullivan K, Young G, Zachariah MR. Enhanced reactivity of nano-B/Al/CuO MIC’s. Combust Flame. 2009;156(2):302–7.

    Article  CAS  Google Scholar 

  2. Yetter RA, Risha GA, Son SF. Metal particle combustion and nanotechnology. Proc Combust Inst. 2009;32(2):1819–38.

    Article  CAS  Google Scholar 

  3. Meda L, Marra G, Galfetti L, Severini F, De Luca L. Nanoaluminum as energetic material for rocket propellants. Mater Sci Eng, C. 2007;27(5):1393–6.

    Article  CAS  Google Scholar 

  4. Sadeghipour S, Ghaderian J, Wahid M. Advances in aluminum powder usage as an energetic material and applications for rocket propellant. In Proceedings of the 4th International Meeting of Advances in Thermalfluids (IMAT 2011). 2012.

  5. Parthiban S, Jain SR, Ragunandan B. Interpenetrating polymer networks as binders for solid composite propellants. Def Sci J. 2013;42:147–9.

    Article  Google Scholar 

  6. Yan S, Jian G, Zachariah MR. Electrospun nanofiber-based thermite textiles and their reactive properties. ACS Appl Mater Interfaces. 2012;4:6432–3.

    Article  CAS  Google Scholar 

  7. Li X, Liu X, Cheng Y, Li Y, Mei X. Thermal decomposition properties of double-base propellant and ammonium perchlorate. J Therm Anal Calorim. 2014;115:887–94.

    Article  CAS  Google Scholar 

  8. Miller HA, Kusel BS, Danielson ST, Neat JW, Avjian EK, Pierson SN, Budy SM, Ball DW, Iacono ST, Kettwich SC. Metastable nanostructured metallized fluoropolymer composites for energetics. J Mater Chem A. 2013;1:7050–8.

    Article  CAS  Google Scholar 

  9. Smith DW, Iacono ST, Boday DJ, Kettwich SC. In advances in fluorine-containing polymers. Dayton: American Chemical Society; 2012.

    Book  Google Scholar 

  10. Sanders VE, et al. Reaction propagation of four nanoscale energetic composites (Al/MoO3, Al/WO3, Al/CuO, and Bi2O3). J Propul Power. 2007;23(4):707–14.

    Article  CAS  Google Scholar 

  11. Wang HY, et al. Assembly and reactive properties of Al/CuO based nanothermite microparticles. Combust Flame. 2014;161(8):2203–5.

    Article  CAS  Google Scholar 

  12. Pantoya ML, et al. Effect of bulk density on reaction propagation in nanothermites and micron thermites. J Propul Power. 2009;25(2):465–70.

    Article  CAS  Google Scholar 

  13. Zhou X, et al. Highly exothermic and superhydrophobic Mg/fluorocarbon core/shell nanoenergetic arrays. ACS Appl Mater Interf. 2014;6:10497–8.

    Article  CAS  Google Scholar 

  14. Zhou X, et al. CuO/Mg/fluorocarbon sandwich-structure superhydrophobic nanoenergetic composite with anti-humidity property. Chem Eng J. 2015;266:163–7.

    Article  CAS  Google Scholar 

  15. Meeks K, Pantoya ML, Apblett C. Deposition and characterization of energetic thin films. Combust Flame. 2014;161:1117–24.

    Article  CAS  Google Scholar 

  16. Ball W, Iacono ST, Kettwich SC. Metastable nanostructured metallized fluoropolymer composites for energetics. J Mater Chem A. 2013;1:7050–8.

    Article  Google Scholar 

  17. Osborne DT, Pantoya ML. Effect of Al particle size on the thermal degradation of Al/teflon mixtures. Combust Sci and Tech. 2007;179:1467–80.

    Article  CAS  Google Scholar 

  18. Kubota N, Serizawa C. Combustion of magnesium/polytetrafluoroethylene. J Propul Power. 1987;9:539–45.

    Google Scholar 

  19. Watson KW, Pantoya ML, Levitas VI. Fast reactions with nano- and micrometer aluminum: a study on oxidation versus fluorination. Combust Flame. 2008;155:619–34.

    Article  CAS  Google Scholar 

  20. Koch EC. Metal-Fluorocarbon-Pyrolants: III. Development and application of magnesium/teflon/viton (MTV). Propellants Explos Pyrotech. 2002;27:262–4.

    Article  CAS  Google Scholar 

  21. Yarrington CD, Son SF, Foley TJ. Combustion of silicon/teflon/viton and aluminum/teflon/viton energetic composites. J Propul Power. 2010;26(4):734–9.

    Article  CAS  Google Scholar 

  22. Datta S, et al. Reaction dynamics and probability study of aluminum-viton-acetone droplets. J Propul Power. 2011;27(2):396–401.

    Article  CAS  Google Scholar 

  23. Huang C, Jian G, DeLisio JB, Wang H, Zachariah MR. Electrospray deposition of energetic polymer nanocomposites with high mass particle loadings: a prelude to 3D printing of rocket motors. Adv Eng Mater. 2015;17(1):95–6.

    Article  CAS  Google Scholar 

  24. Li X, Guerieri P, Zhou W, Huang C, Zachariah MR. Direct deposit laminate nano-composite with enhanced propellant properties. ACS Appl Mater Interfaces. 2015;7(17):9103–6.

    Article  CAS  Google Scholar 

  25. Huang C, et al. Characterization of aluminum/poly (vinylidene fluoride) by thermogravimetric analysis, differential scanning calorimetry, and mass spectrometry. Anal Lett. 2015. doi:10.1080/00032719.2015.1012675.

    Google Scholar 

  26. McHale JM, Auroux A, Perrotta AJ, Navrotsky A. Surface energies and thermodynamic phase stability in nanocrystalline aluminas. Science. 1997;1997(277):788–91.

    Article  Google Scholar 

  27. Jia WZ, Lu JQ, Chen P, Wang YJ, Luo MF. A novel method for the synthesis of well-crystallized β-AlF3 with high surface area derived from γ-Al2O3. J Mater Chem. 2011;21:8987–90.

    Article  CAS  Google Scholar 

  28. Umbrajkar SM, Mirko S, Dreizin EL. Exothermic reactions in Al-CuO nanocomposites. Thermochim Acta. 2006;451(1):34–9.

    Article  CAS  Google Scholar 

  29. Wang H, DeLisio JB, Jian G. Electrospray formation and combustion characteristics of iodine-containing Al/CuO nanothermite microparticles. Combust Flame. 2015;162(7):2823–6.

    Article  CAS  Google Scholar 

  30. Puts GJ, Crouse PL. The influence of inorganic materials on the pyrolysis of polytetrafluoroethylene: part 2: The common oxides of Al, Ga, In, Zn, Cu, Ni Co, Fe, Mn, Cr, V. Zr and La. J Fluorine Chem. 2014;168:9–15.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Laboratory Fund (9140C370304140C37173).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Cheng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1408 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Huang, C., Yang, H. et al. Thermal reaction properties of aluminum/copper (II) oxide/poly(vinylidene fluoride) nanocomposite. J Therm Anal Calorim 124, 899–907 (2016). https://doi.org/10.1007/s10973-015-5194-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-5194-8

Keywords

Navigation