Log in

Modification of activated carbon from agricultural waste lotus leaf and its adsorption mechanism of beryllium

  • Polymer, Industrial Chemistry
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

With the wide application of beryllium globally, industrial wastewater has rapidly increased. Previously, adsorption was effective in treating this issue. However, most adsorbents have a poor removal rate, primarily in the low adsorption capacity. To remove Be from industrial wastewater and overcome the disadvantages of low adsorption capacity and poor removal rate of existing adsorbents, typical agricultural waste lotus leaf was used to prepare Al-activated carbon (Al-AC) by the impregnation-calcination modification of Al(NO3)3. The theoretical maximum adsorption capacity of Al-AC was 32.86 mg/g. Langmuir, Freundlich, and Temkin models were used to thermodynamically analyze Al-AC, and adsorption thermodynamics demonstrated that the adsorption reaction of Al-AC was endothermic. Through characterization analysis, the specific surface area of the modified AC increased from 4.3573 to 155.87 m2/g. This study provides a new approach to preparing and modifying AC and a new method for removing Be from industrial wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. **angyuan, X. Lei, W. Rucheng, Z. Rongqing, H. Huan and L. Chen, J. Nan**g University (Natural Science), 56, 815 (2020).

    Google Scholar 

  2. L. Chengxing, Engineering study on biological treatment of beryllium-containing wastewater, Master dissertation, Central South University (2010).

  3. M. Tanveer and L. Wang, Plant Physiol. Bioch., 139, 691 (2019).

    Article  Google Scholar 

  4. M. L. Chiarappa-Zucca, R. C. Finkel, R. E. Martinelli, J. E. McAninch, D._O. Nelson and K. W. Turteltaub, Chem. Res. Toxicol., 17, 1614 (2004).

    Article  Google Scholar 

  5. B. Vladimír, V. Elena and V. Symon Karel, Environ. Res., 22, 439 (1980).

    Article  Google Scholar 

  6. Z. Minglong, C. Liyuan, M. **aobo, L. Qingzhu and W. Shunwen, Technol. Water Treat., 32, 45 (2006).

    Google Scholar 

  7. L. Phillip, J. Environ, Sci. Heal A., 25, 21 (2008).

    Google Scholar 

  8. L. C. Robles and A. J. Aller, Quim. Anal., 15, 21 (1995).

    Google Scholar 

  9. J. Ke, Z. Kanggen and Y. Youcai, Nonferrous Metal (Smelting Section), 06, 83 (2018).

    Google Scholar 

  10. X. Xuejun and L. Yanhui, Chinese J. Rare Metals., S1, 59 (2007).

    Google Scholar 

  11. C. Hewen, Z. **aojia, X. Haiying and Y. **aorong, Water Technol., 06, 16 (2011).

    Google Scholar 

  12. W. Minzhan, Z. Zhengke, C. Sili, C. Sha, G. Qingwei and W. **song, Technol. Water Treat., 47, 78 (2021).

    Google Scholar 

  13. K. Ersin, B. Sezgin and Y. Mehmet, Food Addit Contam Part A Chem. Anal. Control Expo. Risk Assess., 28, 455 (2011).

    Article  Google Scholar 

  14. D. Yongbo, X. Lei, Q. Zhimin and S. Honglan, Chemosphere, 262, 127940 (2021).

    Article  Google Scholar 

  15. L. **anchun, W. Huanran and S. Gege, Int. J. Hydrogen Energ., 144, 25265 (2019).

    Google Scholar 

  16. S. Norouzi, M. Heidari, V. Alipour and K. Dindarloo, Bioresour. Technol., 258, 48 (2018).

    Article  Google Scholar 

  17. F. Sabrina. Lütke, V. Andrei. Igansi, L. Pegoraro and R. s. Tito, J. Environ. Chem. Eng., 17, 103396 (2019).

    Article  Google Scholar 

  18. L. Lin, L. Suqin and L. Junxin, J. Hazard. Mater., 192, 683 (2011).

    Article  Google Scholar 

  19. Y. Kuang, Z. ** and Z. Shaoqi, Water, 12, 587 (2020).

    Article  Google Scholar 

  20. A. S. Zulaicha, J. Phys. Conf. Ser., 1, 1751 (2021).

    Google Scholar 

  21. L. Youji, L. **g, M. Mingyuan and Y. Wenbin, Sci. China Ser. B., 52, 1113 (2009).

    Google Scholar 

  22. P. Karthikeyan and S. Meenakshi, J. Mol. Liq., C, 296, 111766 (2019).

    Article  Google Scholar 

  23. R. Zhijun, J. Biao, Z. Guangming and L. Longyi, Chemosphere, 262, 127895 (2021).

    Article  Google Scholar 

  24. K. A. Al-Saad, M. A. Amr, D. T. Hadi, R. S. Arar, M. M. AL-Sulaiti, T. A. Abdulmalik, N. M. Alsahamary and J. C. Kwak, Arab. J. Nucl. Sci. Appl., 45, 335 (2012).

    Google Scholar 

  25. B. Kotaro, K. Naoki, S. Saki and M. Hideaki, Anal. Sci., 11, 1067 (2014).

    Google Scholar 

  26. Y. Yücel and S. Göycincik, Waste Biomass Valori, 6, 1077 (2015).

    Article  Google Scholar 

  27. E. Maria Iannicelli-zubiani, P. Gallo Stampino, C. Cristiani and G. Dotelli, Chem. Eng. J., 341, 75 (2018).

    Article  Google Scholar 

  28. O. Pezoti, A. L. Cazetta, K. C. Bedin, L. S. Souza, A. C. Martins, T. L. Silva and V. C. Almeida, Chem. Eng. J., 288, 778 (2016).

    Article  Google Scholar 

  29. A. C. Martins, O. Pezoti, A. L. Cazetta and V. C. Almeida, Chem. Eng. J., 288, 291 (2015).

    Article  Google Scholar 

  30. P. Senthil Kumar, S. Ramalingam, S. D. Kirupha and S. Sivanesan, Chem. Eng. J., 167, 122 (2010).

    Article  Google Scholar 

  31. A. Oberlintner, V. Shvalya, A. Vasudevan, D. Vengust, B. Likozar, U. Cvelbar and U. Novak, Appl. Surf. Sci., 581, 152276 (2022).

    Article  Google Scholar 

  32. M. Thommes, Pure Appl. Chem., 87, 1051 (2016).

    Article  Google Scholar 

  33. L. Weifeng, Z. Jian, Z. Chenglu and L. Ye, Chem. Eng. J., 162, 677 (2010).

    Article  Google Scholar 

  34. Z. Heshan, G. Wanqian, L. Shuo and C. Jo-shu, Bioresour. Technol., 244, 1456 (2017).

    Article  Google Scholar 

  35. T. Watanabe, Y. Miki, T. Masuda, H. Kanai, S. Hosokawa, K. Wada and M. Inoue, Appl. Catal. A-gen., 396, 140 (2011).

    Article  Google Scholar 

  36. T. Depci, Chem. Eng. J., 181, 467 (2012).

    Article  Google Scholar 

  37. I. Abdulkadir, B. S. Mohammed, M. S. Liew and M. M. A. Wahab, Case Stud. Constr. Mat., 14, E00525 (2021).

    Google Scholar 

  38. S. Çam Kaynar and Ü. H. Kaynar, Nucl. Sci. Tech., 30, 75 (2019).

    Article  Google Scholar 

  39. S. Fang, S. Wei-ling, S. Hai-mei and N. **-ren, Chem. Eng. J., 172, 783 (2011).

    Google Scholar 

  40. V. S. Savenko, Russ. J. Inorg. Chem., 52, 465 (1965).

    Article  Google Scholar 

  41. Y. Chenhui, Z. Yongqing, D. Meimei, D. **aodong and H. Shaobin, Chem. Eng. J., 362, 262 (2019).

    Article  Google Scholar 

  42. Z. Peizhen, Z. **aoxiao, Y. **angru, X. Ruyue and H. Lujia, Bioresour. Technol., 331, 125013 (2021).

    Article  Google Scholar 

  43. C. Yaoning, L. Meiling, L. Yuan**, L. Yihuan, C. Yanrong, L. Hui and L. Chen, Bioresour. Technol., 321, 12443 (2021).

    Google Scholar 

  44. H. Karaca, E. Atıntığ, D. Türker and M. Teker, J. Disper. Sci. Technol., 39, 1800 (2018).

    Article  Google Scholar 

  45. F. Mashkoor, A. Nasar, I. Abdullah and M. Asiri, Sci. Rep-uk., 8, 8314 (2018).

    Article  Google Scholar 

  46. M. Shaban, M. R. Abukhadra, M. G. Shahien and A. A. P. Khan, Environ. Sci. Pollut. R., 24, 18135 (2017).

    Article  Google Scholar 

  47. C. Huayi, L. Wenyan, W. **** and Z. Yulong, Bioresour. Technol., 292, 12198 (2019).

    Google Scholar 

  48. Z. **n, L. Yaru, W. Mengru, P. Yao, H. Zhenbing, H. Mian and C. Zhihua, Bioresour. Technol., 320, 124264 (2021).

    Article  Google Scholar 

  49. Z. **aogang, H. **nyue, P. Hao, W. **g and L. Sihao, Bioresour. Technol., 334, 125238 (2021).

    Article  Google Scholar 

  50. R. Gang, Y. Yan, Y. Zhixin, D. Yaomin and L. **aoyi, J. Saf. Environ., 16, 208 (2016).

    Google Scholar 

  51. M. O. Abd El-magied, A. Mansour, F. A. Al Ghani Alsayed and S. Abd Eldayem, J. Disper. Sci. Technol., 39, 1597 (2018).

    Article  Google Scholar 

  52. N. N. Basargin and O. V. Miroshnichenko, Russ. J. Inorg. Chem., 57, 758 (2012).

    Article  Google Scholar 

  53. A. B. Petriciolet, D. I. M. Castillo and H. E. R. Ávila, Adsorption processes for water treatment and purification, Springer, Publications, Berlin (2017).

    Book  Google Scholar 

  54. M. Hadi, M. R. Samarghandi and G. Mckay, Chem. Eng. J., 160, 408 (2010).

    Article  Google Scholar 

  55. A. S. Singha and A. Guleria, J. Environ. Chem. Eng., 2, 1456 (2014).

    Article  Google Scholar 

  56. S. Srivastava, S. B. Agrawal and M. K. Mondal, Korean. J. Chem. Eng., 33, 567 (2016).

    Article  Google Scholar 

  57. S. Mirzaeei, F. H. Pirhayati, G. Mohammadi, E. Rahimpour, F. Martinez and A. Jouyban, Phys. Chem. Liq., 57, 788 (2019).

    Article  Google Scholar 

  58. L. Jiayang, H. Changwei and H. Qingguo, Bioresour. Technol., 271, 487 (2018).

    Google Scholar 

  59. L. Yu and L. Ya-juan, Sep. Purif. Technol., 61, 229 (2007).

    Google Scholar 

  60. M. Barkat, D. Nibou, S. Chegrouche and A. Mellah, Chem. Eng. Process., 48, 38 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the following funding agencies for supporting this work: Foundation of State Key Laboratory of Nuclear Resources and Environment (2020NRE02). Research on characteristic properties of typical radioactive solid waste and radiation protection regulation technology and operation management mechanism (2019YFC1907701).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingliang Wang or Lechang Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Su, Y., Wang, H. et al. Modification of activated carbon from agricultural waste lotus leaf and its adsorption mechanism of beryllium. Korean J. Chem. Eng. 40, 255–266 (2023). https://doi.org/10.1007/s11814-022-1251-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1251-8

Keywords

Navigation