Log in

Simultaneous determination of four quinolones in honey by nickel/aluminum-layered double hydroxide-based air-assisted dispersive solid-phase extraction and high-performance liquid chromatography

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

A novel air-assisted dispersive solid-phase extraction method based on nickel/aluminum-layered double hydroxides combined with high performance liquid chromatography was established for the simultaneous determination of ofloxacin, norfloxacin, ciprofloxacin and enrofloxacin in honey. With the assistance of air, nickel/aluminum-layered double hydroxides extracted quinolones from the matrix under alkaline conditions via the coordination reaction between their surface layer metal cations and quinolones, and their interlayer exchange reaction toward anionic quinolones. Afterwards, the adsorbents were dissolved with acidic solutions and the analytes were detected by high performance liquid chromatography-fluorescence detector. Under optimization, the method achieved low detection limits of 0.25–0.82 ng/g and quantification limits of 0.82–2.73 ng/g. High accuracy were obtained with recoveries of 82.3–90.5%. The intra-day and inter-day relative standard deviations were 4.39–11.0% and 2.16–17.5%, respectively. The method was simple, sensitive, convenient and environment friendly. It was suitable for the determination of quinolones in honey.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L. Ceballos, J.A. Pino, C.E. Quijano-Celis, A. Dago, J. Food Quality (2010). https://doi.org/10.1111/j.1745-4557.2010.00330.x

    Article  Google Scholar 

  2. X. Di, X. Wang, Y. Liu, X. Guo, X. Di, J. Sep. Sci. (2019). https://doi.org/10.1002/jssc.201801009

    Article  PubMed  Google Scholar 

  3. Ż Barganska, J. Namiesnik, M. Ślebioda, Trac-Trend Anal. Chem. (2011). https://doi.org/10.1016/j.trac.2011.02.014

    Article  Google Scholar 

  4. Q. Tang, T. Yang, X. Tan, J. Luo, J. Agric. Food Chem. (2009). https://doi.org/10.1021/jf900513b

    Article  PubMed  Google Scholar 

  5. Ministry of Agriculture of the people's republic of China, Notice No. 2292 of the People's Republic of China. (2015) http://www.moa.gov.cn/nybgb/2015/jiuqi/201712/t20171219_6103873.htm. Accessed 23 March 2022

  6. A.İ Emir, Y.K. Ece, R. Sinem, A. Sezer, E. Özge, Food Addit. Contamin. Part A (2021). https://doi.org/10.1080/19440049.2021.1881621

    Article  Google Scholar 

  7. X. Wang, W. Zhou, C. Wang, Z. Chen, Talanta (2018). https://doi.org/10.1016/j.talanta.2018.04.100

    Article  PubMed  Google Scholar 

  8. N. Phiroonsoontorn, S. Sansuk, Y. Santaladchaiyakit, S. Srijaranai, J. Chromatogr. A (2017). https://doi.org/10.1016/j.chroma.2017.09.005

    Article  PubMed  Google Scholar 

  9. R. Wang, S. Li, D. Chen, Y. Zhao, Y. Wu, K. Qi, Food Chem. (2021). https://doi.org/10.1016/j.foodchem.2020.128269

    Article  PubMed  PubMed Central  Google Scholar 

  10. Q. Zhang, Q. Zhou, L. Yang, X. Wang, Y. Zheng, L. Bao, J. Sep. Sci. (2020). https://doi.org/10.1002/jssc.201901189

    Article  PubMed  Google Scholar 

  11. A.H. Shendy, M.A. Al-Ghobashy, S.A.G. Alla, H.M. Lotfy, Food Chem. (2016). https://doi.org/10.1016/j.foodchem.2015.06.048

    Article  PubMed  Google Scholar 

  12. J. Wang, D. Leung, Drug Test. Anal. (2012). https://doi.org/10.1002/dta.1355

    Article  PubMed  Google Scholar 

  13. M. Ezoddin, L. Adlnasab, A.A. Kaveh, M.A. Karimi, B. Mahjoob, Biomed. Chromatogr. (2019). https://doi.org/10.1002/bmc.4572

    Article  PubMed  Google Scholar 

  14. L. Adlnasab, M. Ezoddin, M. Shabanian, B. Mahjoob, Microchem. J. (2019). https://doi.org/10.1016/j.microc.2018.12.020

    Article  Google Scholar 

  15. Y. Yang, S. Yin, L. Wu, Y. Li, C. Sun, Eur. Food Res. Technol. (2021). https://doi.org/10.1007/s00217-021-03838-3

    Article  Google Scholar 

  16. L. Wang, T. Huang, H. Cao, Q. Yuan, Z. Liang, G. Liang, Food Anal. Methods (2016). https://doi.org/10.1007/s12161-016-0409-6

    Article  Google Scholar 

  17. M. Rajabi, A.G. Moghadam, B. Barfi, A. Asghari, Microchim. Acta (2016). https://doi.org/10.1007/s00604-016-1780-0

    Article  Google Scholar 

  18. Y. Yang, J. Zhang, Y. Li, S. Yin, Y. Jiang, C. Sun, Anal. Methods (2021). https://doi.org/10.1039/d1ay00154j

    Article  PubMed  Google Scholar 

  19. H. Abdolmohammad-Zadeh, Z. Rezvani, G.H. Sadeghi, E. Zorufi, Anal. Chim. Acta (2011). https://doi.org/10.1016/j.aca.2010.11.035

    Article  PubMed  Google Scholar 

  20. B. Wang, J. Qu, X. Li, X. He, Q. Zhang, J. Am. Ceram. Soc. (2016). https://doi.org/10.1111/jace.14404

    Article  Google Scholar 

  21. C. Taviot-Guého, V. Prévot, C. Forano, G. Renaudin, C. Mousty, F. Leroux, Adv. Funct. Mater. (2018). https://doi.org/10.1002/adfm.201703868

    Article  Google Scholar 

  22. S. Tang, H.K. Lee, Anal. Chem. (2013). https://doi.org/10.1021/ac4013573

    Article  PubMed  PubMed Central  Google Scholar 

  23. M. Rajabi, S. Arghavani-Beydokhti, B. Barfi, A. Asghari, Anal. Chim. Acta (2017). https://doi.org/10.1016/j.aca.2016.12.041

    Article  PubMed  Google Scholar 

  24. S. Sansuk, S. Nanan, S. Srijaranai, Green Chem. (2015). https://doi.org/10.1039/c5gc00713e

    Article  Google Scholar 

  25. A. Khoobi, M. Salavati-Niasari, M. Ghani, S.M. Ghoreishi, A. Gholami, Food Chem. (2019). https://doi.org/10.1016/j.foodchem.2019.02.118

    Article  PubMed  Google Scholar 

  26. Y. Picó, V. Andreu, Anal. Bioanal. Chem. (2007). https://doi.org/10.1007/s00216-006-0843-1

    Article  PubMed  Google Scholar 

  27. H. Park, C. Oh, H. Lee, J. Lee, K. Yang, K. Bark, Photochem. Photobiol. (2002). https://doi.org/10.1562/0031-8655(2002)0750237SPOFAI2.0.CO2

    Article  PubMed  Google Scholar 

  28. A. Albini, S. Monti, Chem. Soc. Rev. (2003). https://doi.org/10.1039/b209220b

    Article  PubMed  Google Scholar 

  29. H. Park, T.H. Kim, K. Bark, Eur. J. Med. Chem. (2002). https://doi.org/10.1016/S0223-5234(02)01361-2

    Article  PubMed  Google Scholar 

  30. M. Gao, H. Wang, M. Ma, Y. Zhang, X. Yin, R.A. Dahlgren, D. Du, X. Wang, Food Chem. (2015). https://doi.org/10.1016/j.foodchem.2014.11.132

    Article  PubMed  Google Scholar 

  31. M.N. Sepehr, T.J. Al-Musawi, E. Ghahramani, H. Kazemian, M. Zarrabi, Arab. J. Chem. (2017). https://doi.org/10.1016/j.arabjc.2016.07.003

    Article  Google Scholar 

  32. F. Beigi, M.S.S. Mousavi, F. Manteghi, M. Kolahdouz, Appl. Clay Sci. (2018). https://doi.org/10.1016/j.clay.2018.09.006

    Article  Google Scholar 

  33. S. Mallakpour, M. Dinari, RSC Adv. (2015). https://doi.org/10.1039/c5ra03383g

    Article  Google Scholar 

  34. B. Barfi, A. Asghari, M. Rajabi, Arab. J. Chem. (2020). https://doi.org/10.1016/j.arabjc.2017.06.002

    Article  Google Scholar 

  35. Q. Gao, H. Zheng, D. Luo, J. Ding, Y. Feng, Anal. Chim. Acta (2012). https://doi.org/10.1016/j.aca.2011.12.067

    Article  PubMed  Google Scholar 

  36. X. Cui, P. Zhang, X. Yang, M. Yang, W. Zhou, S. Zhang, H. Gao, R. Lu, Anal. Chim. Acta (2015). https://doi.org/10.1016/j.aca.2015.03.056

    Article  PubMed  Google Scholar 

  37. K. Yu, M. Yue, J. Xu, T. Jiang, Food Chem. (2020). https://doi.org/10.1016/j.foodchem.2020.127371

    Article  PubMed  PubMed Central  Google Scholar 

  38. L. Chen, X. Huang, J. Agric. Food Chem. (2016). https://doi.org/10.1021/acs.jafc.6b03965

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Science and Technology Project of Luzhou (No. 2021-JYJ-72), the Natural Science Foundation of Sichuan Province (No. 2022NSFSC1490) and the Applied Basic Research Foundation of Southwest Medical University (No. 2021ZKQN003).

Funding

This work was supported by the Science and Technology Project of Luzhou (No. 2021-JYJ-72), the Natural Science Foundation of Sichuan Province (No. 2022NSFSC1490) and the Applied Basic Research Foundation of Southwest Medical University (No. 2021ZKQN003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Yang.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

This study does not contain human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 139 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Ma, L., Jiang, Y. et al. Simultaneous determination of four quinolones in honey by nickel/aluminum-layered double hydroxide-based air-assisted dispersive solid-phase extraction and high-performance liquid chromatography. Food Measure 16, 5023–5031 (2022). https://doi.org/10.1007/s11694-022-01595-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-022-01595-9

Keywords

Navigation