Log in

Development of a Modified Gurson–Tvergaard–Needleman Damage Model Characterizing the Strain-Rate-Dependent Behavior of 6061-T5 Aluminum Alloy

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

It is of vital importance to improve the lightweight and crash safety of automobiles to accurately characterize the fracture features of automotive aluminum alloys under complex working conditions. This study starts with mechanical tests of 6061-T5 aluminum alloy under different stress states and strain rates, the results of which show obvious strain rate sensitivity in such a material. Then, the parameters of the Gurson–Tvergaard–Needleman_Johnson–Cook (GTN_JC) damage model are calibrated based on the test data under different stress states. In view of the fact that the GTN model cannot reflect the strain rate effect, the yield stress is introduced into the strain rate term to modify its hardening stage; in addition, the relationships among \({f}_{c}\),\({f}_{F}\) and the strain rate are established to modify its fracture stage. The modified GTN model can accurately predict the plastic and fracture features of 6061-T5 aluminum alloy at different strain rates. Finally, the modified GTN damage model is programmed as a UMAT in LS-DYNA for simulation analysis. The results of the simulation and the test agree with each other very well, proving the superior reliability of the UMAT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H.Z. Lu, M.T. Ma, J.H. You and Z.G. Li, Application of Aluminum Alloy in Auto Panel and Research Development of Related Technology[J], World Nonferrous Metals, 2008, 5, p 66–70. (in Chinese)

    Google Scholar 

  2. S. Simunovic, P. Nukala, J. Fekete, D. Meuleman and M. Milititsky, Modeling of Strain Rate Effects in Automotive Impact[J], SAE Trans., 2003, 112, p 733–743.

    Google Scholar 

  3. Y.X. Yan, Q. Sun, J.J. Chen and H.L. Pan, The Initiation and Propagation of Edge Cracks of Silicon Steel During Tandem Cold Rolling Process Based on the Gurson-Tvergaard-Needleman Damage Model[J], J. Mater. Process. Technol., 2013, 213(4), p 598–605.

    Article  CAS  Google Scholar 

  4. B.G. Teng, W.N. Wang, Y.Q. Liu and S.J. Yuan, Bursting Prediction of Hydroforming Aluminum Alloy Tube Based on Gurson-Tvergaard-Needleman Damage Model[J], Procedia Eng., 2014, 81, p 2211–2216.

    Article  CAS  Google Scholar 

  5. Q. Guo, F.G. Lu, H.C. Cui, R.J. Yang, X. Liu and X.H. Tang, Modelling the Crack Propagation Behavior in 9Cr/Cr Mo V Welds[J], J. Mater. Process. Technol., 2015, 226, p 125–133.

    Article  CAS  Google Scholar 

  6. A.L. Gurson, Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media[J], J. Eng. Mater. Technol., 1977, 99(1), p 2–15.

    Article  Google Scholar 

  7. V. Tvergaard and A. Needleman, Analysis of the Cup-Cone Fracture in a Round Tensile Bar[J], Acta metallurgic, 1984, 32(1), p 157–169.

    Article  Google Scholar 

  8. H. Zhu, L. Zhu and J.H. Chen, Damage and Fracture Mechanism of 6063 Aluminum Alloy Under Three Kinds of Stress States[J], Rare Met., 2008, 01, p 64–69.

    Article  CAS  Google Scholar 

  9. T. Petit, J. Besson, C. Ritter, K. Colas, L. Helfen and T.F. Morgeneyer, Effect of Hardening on Toughness Captured by Stress-Based Damage Nucleation in 6061 Aluminum Alloy[J], Acta Mater., 2019, 180, p 349–365.

    Article  CAS  Google Scholar 

  10. H. Wu, W.C. Xu, D.B. Shan and B.C. **, Mechanism of Increasing Spinnability by Multi-Pass Spinning Forming–Analysis of Damage Evolution Using a Modified GTN Model[J], Int. J. Mech. Sci., 2019, 159, p 1–19.

    Article  Google Scholar 

  11. Y.B. Chen, C.Y. Zhang and C. Vare, An Extended GTN Model for Indentation-Induced Damage[J], Comput. Mater. Sci., 2017, 128, p 229–235.

    Article  CAS  Google Scholar 

  12. M. Feucht, D.Z. Sun, T. Erhart, T. Frank. Recent Development and Applications of the Gurson Model[C]. 5. LS-DYNA Anwenderforum, Ulm, 2006

  13. M. Roth, S. Kolling. Crash and Vibration Analysis of Rotors in a Roots Vacuum Booster[C]// 7th European LS-DYNA Conference, 2009

  14. S.B. Lu, L.Y. Zhou and S. Guo, Characterization of Mechanical Properties of Aluminium Alloy 6061–T6 and Low Carbon Steel Q235 Based on Gurson-JC Model[J], J. Hefei Univ. Technol. (Nat. Sci.), 2014, 37(6), p 641–644. ((in Chinese))

    Google Scholar 

  15. L. Ying, T.H. Gao, H. Rong, X. Han, P. Hu and W.B. Hou, On the Thermal Forming Limit Diagram (TFLD) with GTN Mesoscopic Damage Model for AA7075 Aluminum Alloy: Numerical and Experimental Investigation[J], J. Alloys Compd., 2019, 802, p 675–693.

    Article  CAS  Google Scholar 

  16. P. Verleysen and J. Peirs, Quasi-Static and High Strain Rate Fracture Behaviour of Ti6Al4V[J], Int. J. Impact Eng., 2017, 108, p 370–388.

    Article  Google Scholar 

  17. G. Li and S.S. Cui, Meso-Mechanics and Damage Evolution of AA5182-O Aluminum Alloy Sheet Based on the GTN Model[J], Eng. Fract. Mech., 2020, 235, p 107162.

    Article  Google Scholar 

  18. S. Hao and W. Brocks, The Gurson-Tvergaard-Needleman-Model for Rate and Temperature-Dependent Materials with Isotropic and Kinematic Hardening[J], Comput. Mech., 1997, 20(1–2), p 34–40.

    Article  Google Scholar 

  19. C. Ji, Z.G. Li and J.G. Liu, Development of an Improved MMC-based Fracture Criterion Characterizing the Anisotropic and Strain Rate-Dependent Behavior of 6061–T5 Aluminum Alloy[J], Mech. Mater., 2020, 150, p 103598.

    Article  Google Scholar 

  20. B.G. Teng, W.N. Wang and Y.C. Xu, Ductile Fracture Prediction in Aluminium Alloy 5A06 Sheet Forming Based on GTN Damage Model[J], Eng. Fract. Mech., 2017, 186, p 242–254.

    Article  Google Scholar 

  21. G.R. Johnson and W.H. Cook, Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures[J], Eng. Fract. Mech., 1985, 21(1), p 31–48.

    Article  Google Scholar 

  22. Z.G. Li, J.J. Wang, H.F. Yang, J.G. Liu and C. Ji, A Modified Johnson-Cook Constitutive Model for Characterizing the Hardening Behavior of Typical Magnesium Alloys Under Tension at Different Strain Rates: Experiment and Simulation[J], J. Mater. Eng. Perform., 2020, 29(12), p 8319–8330.

    Article  CAS  Google Scholar 

  23. R. Safdarian, Forming Limit Diagram Prediction of 6061 Aluminum by GTN Damage Model[J], Mech. Ind., 2018, 19(2), p 202–213.

    Article  CAS  Google Scholar 

  24. B.V. Farahan, R. Amaral, J. Belinha, P.J. Tavares and P. Moreira, A GTN Failure Analysis of an AA6061-T6 Bi-failure Specimen[J], Procedia Struct. Integr., 2017, 5, p 981–988.

    Article  Google Scholar 

  25. W.N. Wang. Fracture prediction of 5A06 aluminum alloy sheet in different stress states[D]. Harbin Institute of Technology, 2015. (in Chinese)

  26. I.S. Boldyrev, I.A. Shchurov and A.V. Nikonov, Numerical Simulation of the Aluminum 6061–T6 Cutting and the Effect of the Constitutive Material Model and Failure Criteria on Cutting Forces’ Prediction[J], Procedia Eng., 2016, 150, p 866–870.

    Article  CAS  Google Scholar 

  27. W. Volk. New experiment and numerical approach in the evaluation of the FLD with the FE-method[C]// In Proceedings of the FLC-Zurich 06, Zurich, Switzerland, 2006.

  28. Z.Y. Chen and X.H. Dong, The GTN Damage Model Based on Hill’48 Anisotropic Yield Criterion and its Application in Sheet Metal Forming[J], Comput. Mater. Sci., 2009, 44(3), p 1013–1021.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge, with thanks, the financial support from the Bei**g Natural Science Foundation (No. L201010 and No. L212024) and the National Natural Science Foundation of China (Grant No. 51975041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables

Table 7 The simulation matrix of \({f}_{c}\) and \({f}_{F}\)

7 and

Table 8 The results of simulation matrix

8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Li, R., Ji, C. et al. Development of a Modified Gurson–Tvergaard–Needleman Damage Model Characterizing the Strain-Rate-Dependent Behavior of 6061-T5 Aluminum Alloy. J. of Materi Eng and Perform 31, 7662–7672 (2022). https://doi.org/10.1007/s11665-022-06789-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06789-2

Keywords

Navigation