Establishment of a Failure Model for an A356 Aluminum Alloy Based on the MMC and GISSMO Theory

  • Conference paper
  • First Online:
Proceedings of China SAE Congress 2023: Selected Papers (SAE-China 2023)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 1151))

Included in the following conference series:

  • 356 Accesses

Abstract

Cast aluminum alloys are increasingly being used in key parts of automobiles. Establishing a failure model that is suitable for aluminum alloy castings is vital for vehicle collision simulation and damage analysis. This article determines the damage parameters of an A356 aluminum alloy under different stress triaxialities using a modified Mohr–Coulomb fracture model. It also introduces a GISSMO nonlinear cumulative damage failure model for vehicle collision analysis. The results of the study confirm that the established model can accurately reflect the failure and fracture behavior of the A356 aluminum alloy. Furthermore, when paired with wheel hub collision test results, the model demonstrates high accuracy and reliability in predicting the failure and crack propagation behavior of the A356 aluminum alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 277.13
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 353.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Luo, A.A., Sachdev, A.K., Powell, B.R.: Advanced casting technologies for lightweight automotive applications. China Foundry: Engl. Edn. (4), 7 (2010)

    Google Scholar 

  2. Wei, Z.: An overview of the impact of aluminum alloy parts on automotive lightweighting. China Equip. Eng. 494(06), 139–141 (2022)

    Google Scholar 

  3. Wang, J.: Research progress on multi-component alloying and heat treatment of high strength and toughness Al-Si-Cu-Mg cast aluminum alloys. Materials 16 (2023)

    Google Scholar 

  4. Wu, L., Ke, H., Zhou, H., et al.: Study on microstructure and properties of alsi7mg cast aluminum alloy for automobile. Casting 71(12), 1525–1528 (2022)

    Google Scholar 

  5. Niu, D., Zhao, L., Cui, Y.: Defect analysis and heat treatment process analysis of low pressure casting aluminum alloy. World Nonferrous Metals 604(16), 175–177 (2022)

    Google Scholar 

  6. Yu, A., Yang, C., Gu, D., et al.: Effect of Sc, Ti grain refiner on microstructure and mechanical properties of industrial pure aluminum. Hot Working Technol. 45(10), 100–102 (2016)

    Google Scholar 

  7. Fang, S.M., Yang, C.G., Yu, A.W., et al.: Effect of Sc, Ti, Zr composite micro-alloying on the organization and mechanical properties of pure aluminum. Therm. Process. Technol. 44(10), 87–89 (2015)

    Google Scholar 

  8. Venkatesan, S., Anthony, X.M.: Experimental investigation on stir and squeeze casted aluminum alloy composites reinforced with graphene. Mater. Res. Express 6(12), 126542 (2019)

    Article  Google Scholar 

  9. Zhang, Y., Shen, F., Zheng, J., et al.: Ductility prediction of HPDC aluminum alloy using a probabilistic ductile fracture model. Theor. Appl. Fracture Mech. 119 (2022)

    Google Scholar 

  10. Bao, Y., Wierzbicki, T.: On fracture locus in the equivalent strain and stress triaxiality space. Int. J. Mech. Sci. 46(1), 81–98 (2004)

    Article  Google Scholar 

  11. Barsoum, I., Faleskog, J.: Rupture mechanisms in combined tension and shear-experiments. Int. J. Solids Struct. 44(6), 1768–1786 (2007)

    Article  Google Scholar 

  12. Khan, A.S., Liu, H.: A new approach for ductile fracture prediction on Al 2024–T351 alloy. Int. J. Plast. 35, 1–12 (2012)

    Article  Google Scholar 

  13. Bai, Y.L., Wierzbick, T.: Application of extended Mohr-Coulomb criterion to ductile fracture. Int. J. Fract. 161(1), 1–20 (2010)

    Article  Google Scholar 

  14. Talebi-Ghadikolaee, H., Naein, H.M., Mirnia, M.J., Mirzai, M.A., Alexandrov, S., Gorji, H.: Experimental and numerical investigation of failure during bending of AA6061 aluminum alloy sheet using the modified Mohr-Coulomb fracture criterion. Int. J. Adv. Manuf. Technol. 105(12), 5217–5237 (2019)

    Article  Google Scholar 

  15. Neukamm, F., Feucht, M., Bischoff, M.: On the Application of Continuum Damage Models to Sheet Metal Forming Simulations. Ibai Publishing (2008)

    Google Scholar 

  16. Kong, J., Deng, L., Liu, Y., et al.: Fracture behavior of 6016 aluminum alloy based on GISSMO criterion. J. Netshape Form. Eng. 14(04), 1–10 (2022)

    Google Scholar 

  17. Liang, B., Zhao, Y., Zhao, Q., et al.: On the prediction of failure in 6016 aluminum alloy sheet by GISSMO damage model. J. Mech. Eng. 55(18), 53–62 (2019)

    Article  Google Scholar 

  18. Hadianfard, M.J., Smerd, R., Winkler, S., et al.: Effects of strain rate on mechanical properties and failure mechanism of structural Al-Mg alloys. Mater. Sci. Eng. A 492(1–2), 283–292 (2008)

    Article  Google Scholar 

  19. Liu, M., Lu, Z., Wang, G.: Characterization and simulation prediction of fracture failure behavior of high-strength and soft steel. Mech. Q. 39(4), 8 (2018)

    Google Scholar 

  20. Xu, C., Zhang, G., Lian, C.: Study on fracture failure behavior of DH590 high strength steel based on GISSMO damage model. J. Plast. Eng. 28(6), 7 (2021)

    Google Scholar 

  21. Barnwal, V.K., Lee, S.Y., Kim, J.H., et al.: Failure characteristics of advanced high strength steels at macro and micro scales. Mater. Sci. Eng. A. Struct. Mater.: Properties Misrostruct. Process. 754, 411–427 (2019)

    Google Scholar 

  22. Basaran, M.: Stress state dependent damage modeling with a focus on the lode angle influence. Rwth Aachen (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **anming Meng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, S., Zheng, C., Song, T., Meng, X. (2024). Establishment of a Failure Model for an A356 Aluminum Alloy Based on the MMC and GISSMO Theory. In: Proceedings of China SAE Congress 2023: Selected Papers. SAE-China 2023. Lecture Notes in Electrical Engineering, vol 1151. Springer, Singapore. https://doi.org/10.1007/978-981-97-0252-7_43

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0252-7_43

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0251-0

  • Online ISBN: 978-981-97-0252-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation