Log in

On Dynamic Mechanical Properties of 3003 Aluminum Alloy Based on Generalized Incremental Stress-State-Dependent Damage Model with Modified Johnson–Cook Equation

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The dynamic mechanical properties and the damage prediction are critical for 3003 aluminum alloy during its safety application on lightweight automobile. Dynamic tensile properties at strain rate from 1 to 500 s−1 were analyzed, and the damage behavior was simulated by using the GISSMO model based on original and modified Johnson–Cook (JC) constitutive equation. The experimental results demonstrated that 3003 alloy exhibited significant strain rate sensitivity in the yield strength and fracture prolongation. JC model was modified based on the GISSMO damage parameter. A damage behavior of 3003 aluminum alloy was predicted accurately by using the modified JC equation. The reliability of the modified JC model was verified by using the cup** experiment and the simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. W.G. Guo, X.Q. Zhang, J. Su, Z.Y. Zeng, and X.J. Shao, The characteristic of Plastic Flow and a Physically-Based Model for 3003 Al-Mn Alloy Upon a Wide Range of Strain Rates and Temperatures, Eur. J. Mech. A/Solids, 2011, 30, p 54–62.

    Article  Google Scholar 

  2. G. Chen, G. Fu, T. Wei, C. Cheng, H. Wang, and L. Song, Establishment of Prediction Model of Microstructure and Properties of 3003 Aluminum Alloy During Hot Deformation, Mater. Sci., 2019, 25(4), p 369–375.

    Google Scholar 

  3. J. Du, D. Ding, Z. Xu, J. Zhang, W. Zhang, Y. Gao, G. Chen, X. You, R. Chen, Y. Huang, and J. Tang, Effect of CeLa Addition on the Microstructures and Mechanical Properties of Al-Cu-Mn-Mg-Fe Alloy, Mater. Charact., 2017, 123, p 42–50.

    Article  CAS  Google Scholar 

  4. F. Khakbaz and M. Kazeminezhad, Strain Rate Sensitivity and Fracture Behavior of Severely Deformed Al-Mn Alloy Sheets, Mater. Sci. Engin. A, 2012, 532, p 26–30.

    Article  CAS  Google Scholar 

  5. R. Smerd, S. Winkler, C. Salisbury, M. Worswick, Lloyd, and Finn M, High Strain Rate Tensile Testing of Automotive Aluminum Alloy Sheet, Int. J. Impact Eng., 2005, 32, p 541–560.

    Article  Google Scholar 

  6. T. Mukai, K. Higashi, S. Tsuchida, and S. Tanimura, Influence of Strain Rate on Tensile Properties in Some Commercial Aluminum Alloys, J. Japan Inst. Light Met., 1993, 43(5), p 252–257.

    Article  CAS  Google Scholar 

  7. F.C. Salvado, F. Teixeira-Dias, S.M. Walley, L.J. Lea, and J.B. Cardoso, A Review on the Strain Rate Dependency of the Dynamic Viscoplastic Response of FCC Metals, Process Mater. Sci., 2017, 88, p 186–231.

    CAS  Google Scholar 

  8. W. Wei, K.X. Wei, and G.J. Fan, A New Constitutive Equation for Stain Hardening and Softening of fcc Metals During Severe Plastic Deformation, Acta Materialia, 2008, 56, p 4771–4779.

    Article  CAS  Google Scholar 

  9. D.N. Zhang, Q.Q. Shangguan, C.J. **e, and F. Liu, A Modified Johnson-Cook Model of Dynamic Tensile Behaviors for 7075–T6 Aluminum Alloy, J. Alloys and Compd., 2015, 619, p 186–194.

    Article  CAS  Google Scholar 

  10. J.Q. Tan, M. Zhan, S. Liu, T. Huang, J. Guo, and H. Yang, A Modified Johnson-Cook Model for Tensile Flow Behaviors of 7075–T451 Aluminum Alloy at High Strain Rates, Mater. Sci. Eng. A, 2015, 631, p 214–219.

    Article  CAS  Google Scholar 

  11. Y.B. Zhang, S. Yao, X. Hong, and Z.G. Wang, A Modified Johnson-Cook Model for 7N01 Aluminum Alloy Under Dynamic Condition, J. Cent. South Univ, 2017, 24, p 2550–2555.

    Article  CAS  Google Scholar 

  12. R. Bobbili, A. Paman, and V. Madhu, High Strain Rate Tensile Behavior of Al-4.8Cu-1.2Mg Alloy, Mater. Sci. Eng. A, 2016, 651, p 753–762.

    Article  CAS  Google Scholar 

  13. S.S. Yang, L.Q. Sun, H.K. Deng, G.Y. Li, and J.J. Cui, A Modified Johnson-Cook model of AA6061-O Aluminum Alloy with Quasi-Static Pre-Strain At High Strain Rates, Int. J. Mater. Form., 2021, 14, p 677–689.

    Article  Google Scholar 

  14. Q.T. Pham, S.H. Oh, and Y.S. Kim, An Efficient Method to Estimate the Post-Necking Behavior of Sheet Metals, Int. J. Adv. Manuf. Technol., 2018, 98, p 2563–2578.

    Article  Google Scholar 

  15. Q.T. Pham, B.H. Lee, K.C. Park, and Y.S. Kim, Influence of the Post-Necking Prediction of Hardening Law on the Theoretical Forming Limit Curve of Aluminum Sheets, Int. J. Mech. Sci., 2018, 140, p 521–536.

    Article  Google Scholar 

  16. Y.F. Deng, Y. Zhang, X.K. **ao, A. Hu, H.P. Wu, and J. **ong, Experimental and Numerical Study on the Ballistic Impact Behavior of 6061–T651 Aluminum Alloy Thick Plates Against Blunt-Nosed Projectiles, Int. J. Impact Eng., 2020, 144, p 103659.

    Article  Google Scholar 

  17. Y. **ao and Y.M. Hu, Numerical and Experimental Fracture Study for 7003 Aluminum Alloy at Different Triaxialities, Met. Mater. Int., 2021, 27, p 2499–2511.

    Article  CAS  Google Scholar 

  18. M. Mohamed, M. Amer, M. Shazly, and I. Maters, Assessment of Different Ductile Damage Models of AA5754 for Cold Forming, Int. J. Adv. Manuf. Technol., 2021, 114, p 1219–1231.

    Article  Google Scholar 

  19. J.H. Sung, J.H. Kim, and R.H. Wagoner, A Plastic Constitutive Equation Incorporation Strain, Strain-Rate, and Temperature, Int. J. Plast., 2010, 26, p 1746–1771.

    Article  CAS  Google Scholar 

  20. Neukamm F, Feucht M, Haufe A. 2009 Considering damage history in crashworthiness simulations. Proceedings of the 7th European LS-DYNA Conference, Salzburg, Austria

  21. M. Otroshi, M. Rossel, and G. Meschut, Stress State Dependent Damage Modeling of Self-Pierce Riveting Process Simulation Using GISSMO Damage Model, J. Adv. Join. Proces., 2020, 1, p 100015.

    Article  Google Scholar 

  22. Z.Q. Zhang, Y.J. Cui, and G. Yu, Damaged and Failure Characterization of 7075–T6 Al Alloy Based on GISSMO Model, J. Mech. Sci. Technol., 2021, 35, p 1209–1214.

    Article  Google Scholar 

  23. S.K. Lee, J.S. Lee, J.H. Song, J.Y. Park, S. Choi, W. Noh, and G.H. Kim, Fracture Simulation of Cold Forming Process for Aluminum 7075–T6 Automotive Bumper Beam using GISSMO Damage Model, Procedia Manuf., 2018, 15, p 751–758.

    Article  Google Scholar 

  24. J.X. Fang, Z.Y. Zhu, X.Q. Zhang, L.L. **e, and Z.Y. Huang, Tensile Deformation and Fracture Behavior of AA5052 Aluminum Alloy under Different Strain Rate, J. Mater. Eng. Perform, 2021, 30(12), p 9403–9411.

    Article  CAS  Google Scholar 

  25. A. Shokry, A Modified Johnson-Cook Model for Flow Behavior of Alloy 800H at Intermediate Strain Rates and High Temperatures, J. Mater. Eng. Perform., 2017, 26(12), p 5723.

    Article  CAS  Google Scholar 

  26. A. Shokry, On the Constitutive Modeling of a Powder Metallurgy Nanoquasicrystalline Al93Fe3Cr2Ti2 Alloy at Elevated Temperatures, J. Braz. Soc. Mech. Sci. Eng., 2019, 41(3), p 118.

    Article  Google Scholar 

  27. B. Song and B. Sanborn, A Modified Johnson-Cook Model for Dynamic Response of Metals with an Explicit Strain- and Strain-Rate-Dependent Adiabatic Thermosoftening Effect, J. Dyn. Behav. Mater., 2019, 5(3), p 212–220.

    Article  Google Scholar 

  28. L. Driemeier, M. Brunig, G. Micheli, and M. Alves, Experiments on Stress-Triaxiality Dependence of Material Behavior of Aluminum Alloys, Mech. Mater., 2010, 42, p 207–217.

    Article  Google Scholar 

  29. L.R. Sun, Z.Y. Cai, J.X. Gao, M.W. Wang, and L. Li, Calibration of Ductile Fracture Criterion with Optimal Experiment Design and Prediction on Forming Limit for Aluminum Alloy Sheet, Met. Mater. Int., 2021, 27, p 2499–2511.

    Google Scholar 

  30. Z.Q. Zhang, Y.J. Cui, and Q.M. Chen, Damage and Failure Characterization of 7075 Aluminum Alloy Hot Stam**, J. Mech. Sci. Technol., 2022, 36(1), p 351–357.

    Article  Google Scholar 

  31. Y.B. Bao and T. Wierzbicki, On Fracture Locus in the Equivalent Strain and Stress Triaxialit Space, Int. J. Mech. Sci., 2004, 46, p 81–98.

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Key R&D program of China—the specific project of intergovernmental international science and technology innovation cooperation (No. 2019YFE0124100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cong-Qian Cheng, **an-Ming Meng or Jie Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, CQ., Meng, XM., Wu, Y. et al. On Dynamic Mechanical Properties of 3003 Aluminum Alloy Based on Generalized Incremental Stress-State-Dependent Damage Model with Modified Johnson–Cook Equation. J. of Materi Eng and Perform 32, 451–461 (2023). https://doi.org/10.1007/s11665-022-07140-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07140-5

Keywords

Navigation