Log in

The Role of Nd in Corrosion Properties of Mg-12Gd-2Zn-0.4Zr Alloys

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

To reveal the effect of Nd addition on corrosion properties of Mg-Gd-Zn-Zr alloys, the corrosion behavior of the as-cast Mg-12Gd-2Zn-xNd-0.4Zr (x = 0, 0.5, and 1 wt.%) alloys was investigated by using immersion and electrochemical measurements. The results show that the addition of Nd apparently refines and homogenizes the microstructure of the alloys. The corrosion resistance of the three alloys is improved in the initial 24 h corrosion process with increasing Nd addition according to hydrogen evolution results, later followed by an acceleration of corrosion with prolonging immersion time. During the 60 h immersion tests, the alloy without the addition of Nd exhibits the best corrosion resistance and the alloy with 0.5 wt.% Nd shows the highest corrosion rate, which are consistent with the electrochemical test results. The refined microstructure and increased fraction of the eutectic phase compromise the corrosion resistance of the alloys with Nd addition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D.K. Xu, E.H. Han and Y.B. Xu, Effect of Long–Period Stacking Ordered Phase on Microstructure, Mechanical Property and Corrosion Resistance of Mg Alloys: A Review, Prog. Nat. Sci-Mater., 2016, 26(2), p 117–128. https://doi.org/10.1016/j.pnsc.2016.03.006

    Article  CAS  Google Scholar 

  2. Z. Hu, Z. Yin, Z. Yin, B.B. Tang, X. Huang, H. Yan, H.G. Song, C. Luo and X.H. Chen, Influence of Sm Addition on Microstructural and Mechanical Properties of as-extruded Mg-9Li-5Al Alloy, J. Alloy. Compds., 2020, 842, p 155836. https://doi.org/10.1016/j.jallcom.2020.155836

    Article  CAS  Google Scholar 

  3. D.X. Liu, D.L. Yang, X.L. Li and S.W. Hu, Mechanical Properties, Corrosion Resistance and Biocompatibilities of Degradable Mg–RE Alloys: A Review, J. Mater. Res. Technol., 2019, 8(1), p 1538–1549. https://doi.org/10.1016/j.jmrt.2018.08.003

    Article  CAS  Google Scholar 

  4. Q.T. Jiang, D.Z. Lu, N. Wang, X.T. Wang, J. Zhang, J.Z. Duan and B.R. Hou, The Corrosion Behavior of Mg–Nd Binary Alloys in the Harsh Marine Environment, J. Magnes. Alloy., 2020 https://doi.org/10.1016/j.jma.2019.12.010

    Article  Google Scholar 

  5. J.S. ** Mg Alloys with Simultaneously Improved Strength and Corrosion Resistance via RE Alloying, J. Magnes. Alloy., 2020 https://doi.org/10.1016/j.jma.2020.08.016

    Article  Google Scholar 

  6. S.Q. Yin, W.C. Duan, W.H. Liu, L. Wu, J.M. Yu, Z.L. Zhao, M. Liu, P. Wang, J.Z. Cui and Z.Q. Zhang, Influence of Specific Second Phases on Corrosion Behaviors of Mg–Zn–Gd–Zr alloys, Corros. Sci., 2020, 166, p 108419. https://doi.org/10.1016/j.corsci.2019.108419

    Article  CAS  Google Scholar 

  7. J.F. Wang, Y. Li, S. Huang, Y.Y. Wei, X.F. **, K.Y. Cai and F.S. Pan, Effects of Y on the Microstructure, Mechanical and Bio–corrosion Properties of Mg–Zn–Ca Bulk Metallic Glass, J. Mater. Sci. Technol., 2014, 30(12), p 1255–1261. https://doi.org/10.1016/j.jmst.2014.11.007

    Article  CAS  Google Scholar 

  8. L.Z. Liu, X.H. Chen, J.F. Wang, L.Y. Qiao, S.Y. Gao, K. Song, C.Y. Zhao, X.F. Liu, D. Zhao and F.S. Pan, Effects of Y and Zn Additions on Electrical Conductivity and Electromagnetic Shielding Effectiveness of Mg–Y–Zn Alloys, J. Mater. Sci. Technol., 2019, 35(6), p 1074–1080. https://doi.org/10.1016/j.jmst.2018.12.010

    Article  Google Scholar 

  9. S.M. Ashrafizadeh, R. Mahmudi and A.R. Geranmayeh, A Comparative Study on the Effects of Gd, Y and La rare–earth Elements on the Microstructure and Creep Behavior of AZ81 Mg Alloy, Mater. Sci. Eng. A, 2020, 790, p 139712. https://doi.org/10.1016/j.msea.2020.139712

    Article  CAS  Google Scholar 

  10. J.Y. Zhang, B. Jiang, Q.S. Yang, D. Huang, A.T. Tang, F.S. Pan and Q.Y. Han, Role of second phases on the corrosion resistance of Mg–Nd–Zr alloys, J. Alloy. Compd., 2020, 849, p 156619. https://doi.org/10.1016/j.jallcom.2020.156619

    Article  CAS  Google Scholar 

  11. W.J. Liu, F.H. Cao, L.R. Chang, Z. Zhang and J.Q. Zhang, Effect of Rare Earth Element Ce and La on Corrosion Behavior of AM60 Magnesium Alloy, Corros. Sci., 2009, 51(6), p 1334–1343. https://doi.org/10.1016/j.corsci.2009.03.018

    Article  CAS  Google Scholar 

  12. Z.H. Han, K. Zhang, J. Yang, R. Wei, Y.X. Liu and C.J. Zhang, The Anodic Role of Ni–Containing LPSO Phases During the Microgalvanic Corrosion of Mg98Gd1.5Ni0.5 Alloy, J. Mater. Eng. Perform., 2019, 28, p 2451–2458. https://doi.org/10.1007/s11665-019-04018-x

    Article  CAS  Google Scholar 

  13. Y.J. Wang, Y. Zhang, P.P. Wang, D. Zhang, B.W. Yu, Z. Xu and H.T. Jiang, Effect of LPSO Phases and Aged–precipitations on Corrosion Behavior of as–forged Mg–6Gd–2Y–1Zn–0.3Zr Alloy, J. Mater. Res. Technol., 2020, 9(4), p 7087–7099. https://doi.org/10.1016/j.jmrt.2020.05.048

    Article  CAS  Google Scholar 

  14. X.B. Zhang, J.W. Dai, R.F. Zhang, Z.X. Ba and B. Nick, Corrosion Behavior of Mg–3Gd–1Zn–0.4Zr Alloy with and Without Stacking Faults, J. Magnes. Alloy., 2019, 7(2), p 240–248.

    Article  CAS  Google Scholar 

  15. L. Zhao, W. Chen, J.W. Dai, Z.Z. Wang and X.B. Zhang, Effects of Heat Treatment on Corrosion and Wear Behaviors of Mg–6Gd–2Zn–0.4Zr Alloy in Simulated Body Fluid, J. Mater. Eng. Perform., 2017, 26, p 5501–5510. https://doi.org/10.1007/s11665-017-2975-1

    Article  CAS  Google Scholar 

  16. X.B. Zhang, J.W. Dai, Q.S. Dong, Z.X. Ba and Y.J. Wu, Corrosion Behavior and Mechanical Degradation of As-extruded Mg-Gd-Zn-Zr Alloys for Orthopedic Application, J. Biomed. Mater. Res. B, 2020, 1088, p 698–708. https://doi.org/10.1002/jbm.b.34424

    Article  CAS  Google Scholar 

  17. X.B. Zhang, Z.X. Ba, Q. Wang, Y.J. Wu, Z.Z. Zhang and Q. Wang, Uniform Corrosion Behavior of GZ51K Alloy with Long Period Stacking Ordered Structure for Biomedical Application, Corros. Sci., 2014, 88, p 1–5. https://doi.org/10.1016/j.corsci.2014.07.004

    Article  CAS  Google Scholar 

  18. L.S. Wang, J.H. Jiang, H. Liu, B. Saleh and A.B. Ma, Microstructure Characterization and Corrosion Behavior of Mg–Y–Zn Alloys With Different Long Period Stacking Ordered Structures, J. Magnes. Alloy., 2020, 8(4), p 1208–1220. https://doi.org/10.1016/j.jma.2019.12.009

    Article  CAS  Google Scholar 

  19. J.S. Zhang, J.D. Xu, W.L. Cheng, C.J. Chen and J.J. Kang, Corrosion Behavior of Mg–Zn–Y Alloy with Long–period Stacking Ordered Structures, J. Mater. Sci. Technol., 2012, 28(12), p 1157–1162. https://doi.org/10.1016/S1005-0302(12)60186-8

    Article  CAS  Google Scholar 

  20. J. Liu, L.X. Yang, C.Y. Zhang, B. Zhang, T. Zhang, Y. Li, K.M. Wu and F.H. Wang, Role of the LPSO Structure in the Improvement of Corrosion Resistance of Mg–Gd–Zn–Zr Alloys, J. Alloy. Compd., 2019, 782(25), p 648–658. https://doi.org/10.1016/j.jallcom.2018.12.233

    Article  CAS  Google Scholar 

  21. X.B. Zhang, Z.X. Ba, Z.Z. Wang and Y.J. Xue, Microstructures and Corrosion Behavior of Biodegradable Mg–6Gd–xZn–0.4Zr Alloys with and Without long Period Stacking Ordered Structure, Corros. Sci., 2016, 105, p 68–77. https://doi.org/10.1016/j.corsci.2016.01.004

    Article  CAS  Google Scholar 

  22. J.F. Wang, W.Y. Jiang, Y. Ma, Y. Li and S. Huang, Substantial Corrosion Resistance Improvement in heat–Treated Mg–Gd–Zn Alloys with a long Period Stacking Ordered Structure, Mater. Chem. Phys., 2018, 203, p 352–361. https://doi.org/10.1016/j.matchemphys.2017.09.035

    Article  CAS  Google Scholar 

  23. X.B. Zhang, Q. Wang, F.B. Chen, Y.J. Wu, Z.Z. Wang and Q. Wang, Relation Between LPSO Structure and Biocorrosion Behavior of Biodegradable GZ51K Alloy, Mater. Lett., 2015, 138, p 212–215. https://doi.org/10.1016/j.matlet.2014.09.133

    Article  CAS  Google Scholar 

  24. Z. Yin, R.H. He, Y. Chen, Z. Yin, K. Yan, K. Wang, H. Yan, H.G. Song, C.X. Yin, H.Y. Guan, C. Luo and Z.H.U.C. Luc, Effect of Surface Micro-Galvanic Corrosion and Corrosive Film on the Corrosion Resistance of AZ91-xNd Alloys, Appl. Surf. Sci., 2021, 536, p 147761. https://doi.org/10.1016/j.apsusc.2020.147761

    Article  CAS  Google Scholar 

  25. P. Dinesh, S. Manivannan, S.P. Kumaresh Babu and S. Natarajan, Effect of Nd on the Microstructure and Corrosion Behaviour of Mg-9Li-3Al Magnesium alloy in 3.5 wt.% NaCl Solution, Mater. Today Proc., 2019, 15(1), p 126–131. https://doi.org/10.1016/j.matpr.2019.05.034

    Article  CAS  Google Scholar 

  26. Y.F. Luo, Y.L. Deng, L.Q. Guan, L.Y. Ye and X.B. Guo, The Microstructure and Corrosion Resistance of as–extruded Mg–6Gd–2Y–(0–1.5) Nd–0.2Zr Alloys, Mater. Des., 2020, 186(15), p 108289. https://doi.org/10.1016/j.matdes.2019.108289

    Article  CAS  Google Scholar 

  27. L.X. Hong, R.X. Wang and X.B. Zhang, Effects of Nd on Microstructure and Mechanical Properties of as-cast Mg-12Gd-2Zn-xNd-0.4Zr Alloys with Stacking Faults, J. Miner. Metall. Mater Int, 2021 https://doi.org/10.1007/s12613-021-2264-8

    Article  Google Scholar 

  28. J. Wei, Q.D. Wang, L. Zhang, D.D. Yin, B. Ye, H.Y. Jiang and W.J. Ding, Microstructure Refinement of Mg–Al–RE alloy by Gd Addition, Mater. Lett., 2019, 246, p 125–128. https://doi.org/10.1016/j.matlet.2019.02.126

    Article  CAS  Google Scholar 

  29. X.Y. Hu, P.H. Fu, S. David, L.M. Peng, M. Sun and M.X. Zhang, On Grain Coarsening and Refining of the Mg–3Al alloy by Sm, J. Alloy. Compd., 2016, 663, p 387–394. https://doi.org/10.1016/j.jallcom.2015.11.193

    Article  CAS  Google Scholar 

  30. Z. Zhu, J.F. Zhu, Y.J. Nie, X. Li, J.L. Cheng and X.B. Zhang, Effects of Annealing on Mechanical and Corrosion Properties of as-extruded NQZ310K Alloy, J. Mater. Eng. Perform., 2020, 29, p 925–932. https://doi.org/10.1007/s11665-020-04643-x

    Article  CAS  Google Scholar 

  31. Z. Hu, R.L. Liu, S.K. Kairy, X. Li, H. Yan and N. Birbilis, Effect of Sm Additions on the Microstructure and Corrosion Behavior of Magnesium Alloy AZ91, Corros. Sci., 2019, 149, p 144–152. https://doi.org/10.1016/j.corsci.2019.01.024

    Article  CAS  Google Scholar 

  32. G.L. Song, B. Johannesson, S. Hapugoda and D. StJohn, Galvanic Corrosion of Magnesium alloy AZ91D in Contact with an Aluminium Alloy, Steel and Zinc, Corros. Sci., 2004, 46(4), p 955–977. https://doi.org/10.1016/S0010-938X(03)00190-2

    Article  CAS  Google Scholar 

  33. H. Feng, S.H. Liu, Y. Du, T. Lei, R.C. Zeng and T.C. Yuan, Effect of the Second Phases on Corrosion Behavior of the Mg–Al–Zn Alloys, J. Alloys Compd., 2017, 695, p 2330–2338. https://doi.org/10.1016/j.jallcom.2016.11.100

    Article  CAS  Google Scholar 

  34. D.B. Liu, Y.C. Liu, Y. Huang, R. Song and M.F. Chen, Effects of Solidification Cooling rate on the Corrosion Resistance of Mg–Zn–Ca Alloy, Prog. Nat. Sci-Mater., 2014, 24(5), p 452–457. https://doi.org/10.1016/j.pnsc.2014.08.002

    Article  CAS  Google Scholar 

  35. H. Zengin and Y. Turen, Effect of Y Addition on Microstructure and Corrosion Behavior of Extruded Mg–Zn–Nd–Zr alloy, J. Magnes. Alloy., 2020, 8(3), p 640–653. https://doi.org/10.1016/j.jma.2020.06.004

    Article  CAS  Google Scholar 

  36. G. Song, Recent Progress in Corrosion and Protection of Magnesium Alloys, Adv. Eng. Mater., 2005, 7(7), p 563–586. https://doi.org/10.1002/adem.200500013

    Article  CAS  Google Scholar 

  37. L.T. Yu, Z.H. Zhao, C.K. Tang, W. Li, C. You and M.F. Chen, The Mechanical and Corrosion Resistance of Mg–Zn–Ca–Ag Alloys: The Influence of Ag Content, J. Mater. Res. Technol., 2020, 9(5), p 10863–10875. https://doi.org/10.1016/j.jmrt.2020.07.088

    Article  CAS  Google Scholar 

  38. L. Zhang, J.H. Zhang, C. Xu, Y.B. **g, J.P. Zhuang, R.Z. Wu and M.L. Zhang, Formation of Stacking Faults for Improving the Performance of Biodegradable Mg–Ho–Zn Alloy, Mater. Lett., 2014, 133, p 158–162. https://doi.org/10.1016/j.matlet.2014.06.171

    Article  CAS  Google Scholar 

  39. X.B. Zhang, S. Kairy, J.W. Dai and N. Birbilis, A Closer Look at the Role of Nanometer Scale Solute-Rich Stacking Faults in the Localized Corrosion of a Magnesium Alloy GZ31K, J. Electrochem Soc., 2018, 165(7), p 310–316. https://doi.org/10.1149/2.0391807jes

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Natural Science Foundation of China (52071175), the Natural Science Foundation of Higher Education Institutions of Jiangsu Province - Key Project (18KJA430008), and the Key Research & Development Plan (Social Development) of Jiangsu Province (BE2020702).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **aobo Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, L., Wang, R. & Zhang, X. The Role of Nd in Corrosion Properties of Mg-12Gd-2Zn-0.4Zr Alloys. J. of Materi Eng and Perform 30, 6000–6008 (2021). https://doi.org/10.1007/s11665-021-05782-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05782-5

Keywords

Navigation