Log in

Effects of Annealing on Mechanical and Corrosion Properties of As-Extruded NQZ310K Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The as-extruded NQZ310K (Mg-3.0Nd-1.0Ag-0.2Zn-0.4Zr, mass fraction) alloy was annealed at 300, 350, 400, 450, and 500 °C, respectively. Microstructures of the alloy were observed by an optical microscope and a scanning electron microscope equipped with an energy-dispersive X-ray spectroscope. Ambient mechanical properties were evaluated by tensile tests and nanoindentation tests, and corrosion behavior in simulated body fluid was measured by immersion test. The results show that both matrix grains and precipitates grow up with increasing annealing temperature, and the amount of the precipitates is reduced. The yield strength of the alloy under the as-extruded condition and annealed at 300 and 350 °C is 297, 313, and 298 MPa, and the ultimate tensile strength of it is 327 , 328 , and 315 MPa, respectively, indicating high yield ratio. After annealing at 400, 450, and 500 °C, the yield strength reduces faster than the ultimate tensile strength, resulting in the yield ratio decrease from 0.95 to 0.61, and the elongation improves significantly from 12.3 to 25.5%. The alloy annealed at 350 °C presents the lowest corrosion rate, and then the corrosion resistance of the alloy decreases with increasing annealing temperature. The effects of annealing on microstructure, mechanical and corrosion properties of the as-extruded NQZ310K alloy were also compared with the properties of solution treated alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y.F. Zheng, X.N. Gu, and F. Witte, Biodegradable Metals, Mater. Sci. Eng. R, 2014, 77, p 1–34

    Google Scholar 

  2. K. Kumar, R.S. Gill, and U. Batra, Challenges and Opportunities for Biodegradable Magnesium Alloy Implants, Mater. Technol., 2018, 33, p 153–172

    CAS  Google Scholar 

  3. M. Haude, H. Ince, A. Abizaid, R. Toelg, P.A. Lemos, C.V. Birgelen, E.H. Christiansen, W. Wijns, F.J. Neumann, C. Kaiser, E. Eeckhout, S.T. Lim, J. Escaned, H.M. Garcia-Garcia, and R. Waksman, Safety and Performance of the Second-Generation Drug-Eluting Absorbable Metal Scaffold in Patients with De-novo Coronary Artery Lesions (BIOSOLVE-II): 6 month Results of a Prospective, Multicentre, Non-randomised, First-In-Man Trial, Lancet, 2016, 387, p 31–39

    CAS  Google Scholar 

  4. H.M. Garcia-Garcia, M. Haude, K. Kuku, A. Hideo-Kajita, H. Ince, A. Abizaid, R. Tölg, P.A. Lemos, C.V. Birgelen, E.H. Christiansen, W. Wijns, J. Escaned, J. Dijkstra, and R. Waksman, In vivo Serial Invasive Imaging of the Second-Generation Drug-Eluting Absorbable Metal Scaffold (Magmaris—DREAMS 2G) in De novo Coronary Lesions: Insights From the BIOSOLVE-II, First-In-Man Trial, Int. J. Cardiol., 2018, 255, p 22–28

    Google Scholar 

  5. J.W. Lee, H.S. Han, K.J. Han, J. Park, H. Jeon, M.R. Ok, H.K. Seok, J.P. Ahn, K.E. Lee, D.H. Lee, S.J. Yang, S.Y. Cho, P.R. Cha, H. Kwon, T.H. Nam, J.H.L. Han, H.J. Rho, K.S. Lee, Y.C. Kim, and D. Mantovani, Long-term Clinical Study and Multiscale Analysis of in vivo Biodegradation Mechanism of Mg Alloy, Proc. Nat. Acad. Sci. USA, 2016, 113, p 716–721

    CAS  Google Scholar 

  6. G.Y. Yuan, X.B. Zhang, J.L. Niu, H.R. Tao, D.Y. Chen, Y.H. He, Y. Jiang, and W.J. Ding, Research Progress of New Type of Degradable Biomedical Magnesium Alloys JDBM, Chin. J. Nonferr. Metals, 2011, 21, p 2476–2488

    CAS  Google Scholar 

  7. X.B. Zhang, G.Y. Yuan, X.X. Fang, Z.Z. Wang, and T. Zhang, Effects of Solution Treatment on Yield Ratio and Biocorrosion Behaviour of As-Extruded Mg-2.7Nd-0.2Zn-0.4Zr Alloy for Cardiovascular Stent Application, Mater. Technol., 2013, 28, p 155–158

    CAS  Google Scholar 

  8. H. Windhagen, K. Radtke, A. Weizbauer, J. Diekmann, Y. Noll, U. Kreimeyer, R. Schavan, C. Stukenborg-Colsman, and H. Waizy, Biodegradable Magnesium-Based Screw Clinically Equivalent to Titanium Screw in Hallux Valgus Surgery: Short Term Results of the First Prospective, Randomized, Controlled Clinical Pilot Study, Biomed. Eng. Online, 2013, 12, p 62–72

    Google Scholar 

  9. C.Z. Zhang, S.J. Zhu, L.G. Wang, R.M. Guo, G.C. Yue, and S.K. Guan, Microstructures and Degradation Mechanism in Simulated Body Fluid of Biomedical Mg-Zn-Ca Alloy Processed by High Pressure Torsion, Mater. Des., 2016, 96, p 54–62

    CAS  Google Scholar 

  10. X.B. Zhang, Z.X. Ba, Z.Z. Wang, Y.J. Wu, and Y.J. Xue, Effect of LPSO Structure on Mechanical Properties and Corrosion Behavior of As-Extruded GZ51K Magnesium Alloy, Mater. Lett., 2016, 163, p 250–253

    CAS  Google Scholar 

  11. C.K. Yuen and W.Y. Ip, Theoretical Risk Assessment of Magnesium Alloys as Degradable Biomedical Implants, Acta Biomater., 2010, 6, p 1808–1812

    CAS  Google Scholar 

  12. J.X. Chen, L.L. Tan, X.M. Yu, I.P. Etim, M. Ibrahim, and K. Yang, Mechanical Properties of Magnesium Alloys for Medical Application: a Review, J. Mech. Behav. Biomed. Mater., 2018, 87, p 68–79

    CAS  Google Scholar 

  13. F. Wang, H. Dong, S.J. Sun, Z. Wang, P.L. Mao, and Z. Liu, Microstructure, Tensile Properties, and Corrosion Behavior of Die-cast Mg-7Al-1Ca-xSn Alloys, J. Mater. Eng. Perform., 2018, 27, p 612–623

    CAS  Google Scholar 

  14. M.B. Zheng, G.Q. Xu, D.B. Liu, Y. Zhao, B.Q. Ning, and M.F. Chen, Study on the Microstructure, Mechanical Properties and Corrosion Behavior of Mg-Zn-Ca Alloy Wire for Biomaterial Application, J. Mater. Eng. Perform., 2018, 27, p 1837–1846

    CAS  Google Scholar 

  15. D. Tie, F. Feyerabend, W.D. Mueller, R. Schade, K. Liefeith, K.U. Kainer, and R. Willumeit, Antibacterial Biodegradable Mg-Ag Alloys, Eur. Cells. Mater., 2013, 25, p 284–298

    CAS  Google Scholar 

  16. S.H. Huang, Microstructure and Mechanical Properties of a Ag Micro-Alloyed Mg-5Sn Alloy, J. Mater. Eng. Perform., 2018, 27, p 3199–3205

    CAS  Google Scholar 

  17. Y.J. Chen, Q.D. Wang, J.B. Lin, M.P. Liu, J. Hjelen, and H.J. Roven, Grain Refinement of Magnesium Alloys Processed by Severe Plastic Deformation, Trans. Nonferrous. Metal. Soc. China, 2014, 24, p 3747–3754

    CAS  Google Scholar 

  18. X.B. Zhang, J.W. Dai, Q.S. Dong, Z.X. Ba, and Y.J. Wu, Corrosion Behavior and Mechanical Degradation of As-Extruded Mg-Gd-Zn-Zr Alloys for Orthopedic Application. J. Biomed. Mater. Res., 2019. https://doi.org/10.1002/jbm.b.34424

    Article  Google Scholar 

  19. K. Yan, H. Liu, N. Feng, J. Bai, H.H. Cheng, J.J. Liu, and F.Y. Huang, Preparation of a Single-Phase Mg-6Zn Alloy via ECAP-Stimulated Solution Treatment, J. Magnes. Alloys, 2019, 7, p 305–314

    CAS  Google Scholar 

  20. X.B. Zhang, G.Y. Yuan, and Z.Z. Wang, Effects of Extrusion Ratio on Microstructure, Mechanical and Corrosion Properties of Biodegradable Mg-Nd-Zn-Zr Alloy, Mater. Sci. Technol., 2013, 29, p 111–116

    Google Scholar 

  21. P. Maier, R. Peters, C.L. Mendis, S. Muller, and N. Hort, Influence of Precipitation Hardening in Mg-Y-Nd on Mechanical and Corrosion Properties, JOM, 2016, 68, p 1183–1190

    CAS  Google Scholar 

  22. J.X. Chen, S. Wei, L.L. Tan, and K. Yang, Effects of Solution Treatment on Mechanical Properties and Degradation of Mg-2Zn-0.5Nd-0.5Zr Alloy. Mater. Technol., 2019, 34, p 592–601

    CAS  Google Scholar 

  23. H. Liu, H. Huang, C. Wang, J. Sun, and X.B. Chen, Recent Advances in LPSO-Containing Wrought Magnesium Alloys: Relationships Between Processing, Microstructure, and Mechanical Properties, J. Min. Met. Mat. Soc., 2019, 71, p 3314–3327

    CAS  Google Scholar 

  24. X.B. Zhang, Z.Z. Ba, Z.Z. Wang, X.C. He, C. Shen, and Q. Wang, Influence of Silver Addition on Microstructure and Corrosion Behavior of Mg-Nd-Zn-Zr Alloys for Biomedical Application, Mater. Lett., 2013, 100, p 188–191

    CAS  Google Scholar 

  25. X.B. Zhang, Z.Z. Wang, G.Y. Yuan, and Y.J. Xue, Improvement of Mechanical Properties and Corrosion Resistance of Biodegradable Mg-Nd-Zn-Zr Alloys by Double Extrusion, Mater. Sci. Eng. B, 2012, 117, p 1113–1119

    Google Scholar 

  26. V. Sudarshan, Effect of Trace Additions of Cadmium, Silver and Zirconium on the Precipitation Hardening Behavior Of Aluminum 6061 Alloy, Trans. Indian Inst. Met., 2009, 62, p 209–222

    CAS  Google Scholar 

  27. X.B. Zhang, G.Y. Yuan, J.L. Niu, P.H. Fu, and W.J. Ding, Microstructure, Mechanical Properties, Biocorrosion Behavior, and Cytotoxicity of As-Extruded Mg-Nd-Zn-Zr Alloy with Different Extrusion Ratios, J. Mech. Behav. Biomed. Mater., 2012, 9, p 153–162

    Google Scholar 

  28. G. Gaurav, R. Sarvesha, S.S. Singh, R. Prasad, and J. Jain, Study of Static Recrystallization Behavior of a Mg–6Al–3Sn Alloy, J. Mater. Eng. Perform., 2019, 5, p 1–10

    Google Scholar 

  29. L.X. Zhang, W.C. Zhang, W.Z. Chen, J.P. Duan, W.K. Wang, and E. Wang, The Effect of Grain Size on the Strain Hardening Behavior for Extruded ZK61 Magnesium Alloy, J. Mater. Eng. Perform., 2017, 26, p 6013–6021

    CAS  Google Scholar 

  30. S.J. Wang, Z. Han, Y.J. Nie, X. Li, J.L. Cheng, and X.B. Zhang, Modified Mechanical Properties of Mg-Nd-Zn-Ag-Zr Alloy by Solution Treatment for Cardiovascular Stent Application, Mater. Res. Express, 2019, 6, p 085416

    CAS  Google Scholar 

  31. P. Hidalgo-Manrique, S.B. Yi, J. Bohlen, D. Letzig, and M.T. Perez-Prado, Control of the Mechanical Asymmetry in an Extruded MN11 Alloy by Static Annealing, Metall. Mater. Trans. A, 2014, 45, p 3282–3291

    CAS  Google Scholar 

  32. J.F. Zhu, Z. Zhu, Y.J. Nie, and X.B. Zhang, Effect of Solid Solution Treatment on Mechanical and Corrosion Properties of NQZ310K Bio-Magnesium Alloys, Trans. Mater. Heat. Treat., 2019, 40, p 47–54

    Google Scholar 

  33. B.P. Zhang, L. Geng, L.J. Huang, X.X. Zhang, and C.C. Dong, Enhanced Mechanical Properties in Fine-Grained Mg-1.0Zn-0.5Ca Alloys Prepared by Extrusion at Different Temperatures, Scripta Mater., 2010, 63, p 1024–1027

    CAS  Google Scholar 

  34. X.B. Zhang, Y. Zhang, K. Chen, Z.X. Ba, Z.Z. Wang, and Q. Wang, Microstructure, Mechanical and Corrosion Properties of Mg-Nd-Zn-Sr-Zr Alloy as a Biodegradable Material, Mater. Sci. Technol., 2015, 31, p 866–873

    CAS  Google Scholar 

  35. M. Ben-Haroush, G. Ben-Hamu, D. Eliezer, and L. Wagner, The Relation Between Microstructure and Corrosion Behaviour of AZ80 Mg Alloy Following Different Extrusion Temperatures, Corros. Sci., 2008, 50, p 1766–1778

    CAS  Google Scholar 

  36. X.B. Zhang, J.W. Dai, R.F. Zhang, Z.X. Ba, and N. Birbilis, Corrosion Behavior of Mg-3Gd-1Zn-0.4Zr Alloy With and Without Stacking Faults, J. Magnes. Alloys, 2019, 7, p 240–248

    CAS  Google Scholar 

  37. Y. Dai, X.H. Chen, T. Yan, A.T. Tang, D. Zhao, Z. Luo, C.Q. Liu, R.J. Cheng, and F.S. Pan, Improved Corrosion Resistance in AZ61 Magnesium Alloys Induced by Impurity Reduction. Acta. Metall. Sin. (Eng. Lett.), 2019. https://doi.org/10.1007/s40195-019-00914-2

    Google Scholar 

  38. H.Y. Chi, Z.G. Yuan, Y. Wang, M. Zuo, D.G. Zhao, and H.R. Geng, Glass-Forming Ability, Microhardness, Corrosion Resistance, and Dealloying Treatment of Mg60−xCu40Ndx Alloy Ribbons, Int. J. Miner. Metall. Mater., 2017, 24, p 708–717

    CAS  Google Scholar 

  39. J.W. Dai, X.B. Zhang, Y. Fei, Z.Z. Wang, and H.M. Sui, Effect of Solution Treatment on Microstructure and Corrosion Properties of Mg-4Gd-1Y-1Zn-0.5Ca-1Zr Alloy, Acta Metall. Sin. (Eng. Lett.), 2018, 31, p 865–872

    CAS  Google Scholar 

  40. J. Liu, L.X. Yang, C.Y. Zhang, B. Zhang, T. Zhang, Y. Li, K.M. Wu, and F.H. Wang, Significantly Improved Corrosion Resistance of Mg-15Gd-2Zn-0.39Zr Alloys: Effect of Heat-Treatment, J. Mater. Sci. Technol., 2019, 35, p 1644–1654

    Google Scholar 

  41. K. Ralston and N. Birbilis, Effect of Grain Size on Corrosion: a Review, Corrosion, 2010, 66, p 075005–075013

    Google Scholar 

  42. X.B. Zhang, Y.J. Xue, and Z.Z. Wang, Effect of Heat Treatment on Microstructure, Mechanical Properties and in vitro Degradation Behavior of As-Extruded Mg-2.7Nd-0.2Zn-0.4Zr Alloy, Trans. Nonferr. Met. Soc. China, 2012, 22, p 2343–2350

    CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the Natural Science Foundation of Jiangsu Province for Outstanding Youth (BK20160081, BK20180106), the Natural Science Foundation of Jiangsu Province (BK20181020), the Natural Science Foundation of Higher Education Institutions of Jiangsu Province—Key Project (18KJA430008), the “333 Project” of Jiangsu Province (BRA2018338), and the Innovative Foundation Project for Students of Jiangsu Province (201811276021Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **aobo Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z., Zhu, J., Nie, Y. et al. Effects of Annealing on Mechanical and Corrosion Properties of As-Extruded NQZ310K Alloy. J. of Materi Eng and Perform 29, 925–932 (2020). https://doi.org/10.1007/s11665-020-04643-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04643-x

Keywords

Navigation