Log in

Utilization of steelmaking slag for carbon capture and storage with flue gas

  • Green Energy for Environmental Sustainability
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Carbon capture and storage is a necessary action for the reduction of CO2 emissions, and thereby mitigation of climate change and its impacts. Especially, in India, with its growing fuel needs and very little attention paid towards carbon capture and storage, mineral carbonation technology is a suitable option as it is cost-effective and could be retrofitted to existing plants that emit CO2. Given the development of carbon capture and storage technology, this study attempts direct mineral carbonation of steelmaking slag with flue gas. Response surface methodology was employed to design gas-solid and slurry phase aqueous carbonation experiments. A maximum reduction of about 36.1% was achieved through aqueous carbonation at 61.1 °C, 46.24 bar, and a liquid-to-solid ratio of 14.5, corresponding to a sequestration capacity of 127.4 g of CO2/kg of slag. The temperature was found to be the most vital parameter in both the aqueous and gas-solid carbonation processes. Regression models used to study the carbonation process were found to be statistically significant. The carbonated slag consisted of mineral phases, namely, calcite and dolomite. The results demonstrated the sequestration potential of Indian steelmaking slag with flue gas. Carbonation of steelmaking slag with flue gas poses to be a promising option for the development of carbon capture and storage technology in the country.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8.
Fig. 9
Fig. 10.

Similar content being viewed by others

Availability of data and materials

Not applicable

References

  • Baciocchi R, Costa G, Bartolomeo ED, Polettini A, Pomi R (2010) Carbonation of stainless steel slag as a process for CO2 storage and slag valorization. Waste Biomass Valori 1:467–477

    Article  CAS  Google Scholar 

  • Baciocchi R, Costa G, Gianfilippo MD, Polettini A, Pomi R, Stramazzo A (2015) Thin-film versus slurry-phase carbonation of steel slag: CO2 uptake and effects on mineralogy. J Hazard Mater 283:302–313

    Article  CAS  Google Scholar 

  • Baciocchi R, Costa G, Polettini A, Pomi R (2009) Influence of particle size on the carbonation of stainless steel slag for CO2 storage. Energy Procedia 1(1):4859–4866

    Article  CAS  Google Scholar 

  • Bobicki ER, Liu Q, Xu Z, Zeng H (2012) Carbon capture and storage using alkaline industrial wastes. Prog Energy Combust Sci 38(2):302–320

    Article  CAS  Google Scholar 

  • Bonenfant D, Kharoune L, Sauve S, Hausler R, Niquette P, Mimeault M, Kharoune M (2008) CO2 sequestration potential of steel slags at ambient pressure and temperature. Ind Eng Chem Res 47:7610–7616

    Article  CAS  Google Scholar 

  • Chang EE, Chen CH, Chen YH, Pan SY, Chiang PC (2011a) Performance evaluation for carbonation of steel-making slags in a slurry reactor. J Hazard Mater 186:558–564

    Article  CAS  Google Scholar 

  • Chang EE, Pan SY, Chen YH, Chu HW, Wang CF, Chiang PC (2011b) CO2 sequestration by carbonation of steelmaking slags in an autoclave reactor. J Hazard Mater 195:107–114

    Article  CAS  Google Scholar 

  • Chang EE, Pan SY, Chen YH, Tan CS, Chiang PC (2012) Accelerated carbonation of steelmaking slags in a high-gravity rotating packed bed. J Hazard Mater 227–228:97–106

    Article  CAS  Google Scholar 

  • Chen KW, Pan SY, Chen CT, Chen YH, Chiang PC (2016) High-gravity carbonation of basic oxygen furnace slag for CO2 fixation and utilization in blended cement. J Clean Prod 124:350–360

    Article  CAS  Google Scholar 

  • Chiang PC, Pan SY (2017) System optimization. Carbon dioxide mineralization and utilization. Springer, Singapore, pp 403–439

    Chapter  Google Scholar 

  • Dananjayan RRT, Kandasamy P, Andimuthu R (2016) Direct mineral carbonation of coal fly ash for CO2 sequestration. J Clean Prod 112:4173–4182

    Article  CAS  Google Scholar 

  • Grace MN, Wilson GM, Leslie PF (2012) Statistical testing of input factors in the carbonation of brine impacted fly ash. J Environ Sci Heal a 47:245–259

    Article  CAS  Google Scholar 

  • Huijgen WJJ, Witkamp GJ, Comans RNJ (2005) Mineral CO2 sequestration by steel slag carbonation. Environ Sci Technol 39:9676–9682

    Article  CAS  Google Scholar 

  • Indian Network for Climate Change Assessment (INCCA) (2010) Greenhouse gas emissions, India. Ministry of environment and forests, GOI

  • Intergovernmental Panel on Climate Change (IPCC) (2018) Global warming of 1.5°C. https://www.ipcc.ch/site/assets/uploads/sites/2/2019/05/SR15_SPM_version_report_LR.pdf

  • Intergovernmental Panel on Climate Change (IPCC) (2005) Mineral carbonation and industrial uses of carbon dioxide. In: IPCC special report on carbon dioxide capture and storage. Cambridge University Press, Cambridge, UK, Chapter 7. https://www.ipcc.ch/site/assets/uploads/2018/03/srccs_chapter7-1.pdf. Accessed on 16 June 2020

  • Librandi P, Costa G, Bello de Souza AC, Stefano S, Luna AS (2017) Baciocchi, R. Carbonation of steel slag: testing of the wet route in a pilot-scale reactor. Energy Procedia 114:5381–5392

    Article  CAS  Google Scholar 

  • Ministry of Mines. Indian Minerals Yearbook 2019 (Part—II: metals & alloys) (2020) Indian Bureau of Mines, Government of India.

  • National Academies of Science Engineering and Medicine (2019) Gaseous carbon waste streams utilization: status and research needs. The National Academies Press, Washington, DC, 1-256. https://www.nap.edu/read/25232/chapter/1. Accessed on 10 June 2021

  • Omale SO, Choong TSY, Abdullah LC, Siajam SI, Yip MW (2019) Utilization of Malaysia EAF slags for effective application in direct aqueous sequestration of carbon dioxide under ambient temperature. Heliyon 5(10):e02602

    Article  Google Scholar 

  • Pan SY, Chiang PC, Chen YH, Tan CS, Chang EE (2014) Kinetics of carbonation reaction of basic oxygen furnace slags in a rotating packed bed using the surface coverage model: maximization of carbonation conversion. Appl Energy 113:267–276

    Article  CAS  Google Scholar 

  • Pan SY, Chung TC, Ho CC, Hou CJ, Chen YH, Chiang PC (2017) CO2 mineralization and utilization using steel slag for establishing a waste-to-resource supply Chain. Sci Rep 7:17227. https://doi.org/10.1038/s41598-017-17648-9

    Article  CAS  Google Scholar 

  • Pan SY, Liu HL, Chang EE, Kim H, Chen YH, Chiang PC (2016) Multiple model approach to evaluation of accelerated carbonation for steelmaking slag in a slurry reactor. Chemosphere 154:63–71

    Article  CAS  Google Scholar 

  • Polettini A, Pomi R, Stramazzo A (2016) CO2 sequestration through aqueous accelerated carbonation of BOF slag: a factorial study of parameters effects. J Environ Manage 167:185–195

    Article  CAS  Google Scholar 

  • Reddy KJ, Weber H, Bhattacharyya P, Argyle M, Taylor D, Christensen M, Foulke T, Fahlsing P (2010) Instantaneous capture and mineralization of flue gas carbon dioxide: pilot scale study. Nature Proceedings. https://doi.org/10.1038/npre.2010.5404.1: Posted 16 Dec 2010

  • Revathy TDR, Palanivelu K, Ramachandran A (2017) Sequestration of carbon dioxide by red mud through direct mineral carbonation at room temperature. Int J Global Warming 11(1):23–37

    Article  Google Scholar 

  • Reynolds B, Reddy KJ, Argyle MD (2014) Field application of accelerated mineral carbonation. Minerals 4:191–207

    Article  CAS  Google Scholar 

  • RushendraRevathy TD, Palanivelu K, Ramachandran A (2016) Direct mineral carbonation of steelmaking slag for CO2 sequestration at room temperature. Environ Sci Pollut Res 23(8):7349–7359

    Article  CAS  Google Scholar 

  • RushendraRevathy TD, Ramachandran A, Palanivelu K (2021) Sequestration of CO2 by red mud with flue gas using response surface methodology. Carbon Manag. 12(2):139–151

    Article  CAS  Google Scholar 

  • Sahu RC, Patel R, Ray BC (2010) Neutralization of red mud using CO2 sequestration cycle. J Hazard Mater 179(1–3):28–34

    Article  CAS  Google Scholar 

  • Said A, Laukkanen T, Jarvinen M (2016) Pilot-scale experimental work on carbon dioxide sequestration using steelmaking slag. Appl Energy 177:602–611

    Article  CAS  Google Scholar 

  • Salman M, Cizer O, Pontikes Y, Santos RM, Snellings R, Vandewalle L, Blanpain B, Balen KV (2014) Effect of accelerated carbonation on AOD stainless steel slag for its valorisation as a CO2-sequestering construction material. Chem Eng J 246:39–52

    Article  CAS  Google Scholar 

  • Santos RM, Bouwel JV, Vandevelde E, Mertens G, Elsen J, Gerven TV (2013) Accelerated mineral carbonation of stainless steel slags for CO2 storage and waste valorization: effect of process parameters on geochemical properties. Int J Greenh Gas Control. 17:32–45

    Article  CAS  Google Scholar 

  • Shukla AK, Ahmad Z, Sharma M, Dwivedi G, Verma TN, Jain S, Verma P, Zare A (2020) Advances of carbon capture and storage in coal-based power generating units in an Indian context. Energies 13:4124

    Article  CAS  Google Scholar 

  • Tian S, Jiang J, Chen X, Yan F, Li K (2013) Direct gas–solid carbonation kinetics of steel slag and the contribution to in situ sequestration of flue gas CO2 in steel-making plants. Chem Sus Chem. 6(12):2348–2355

    Article  CAS  Google Scholar 

  • Tiwari MK, Bajpai S, Dewangan UK (2016) Steel slag utilization-overview in Indian perspective. Int J Adv Res 4(8):2232–2246

    Article  Google Scholar 

  • Tiwari SK, Giri BS, Thivaharan V, Srivastava AK, Kumar S, Singh RP, Kumar R, Singh RS (2020) Sequestration of simulated carbon dioxide (CO2) using churning cementations waste and fly-ash in a thermo-stable batch reactor (TSBR). Environ Sci Pollut Res 27:27470–27479

    Article  CAS  Google Scholar 

  • Tu M, Zhao H, Lei Z, Wang L, Chen D, Yu H, Qi T (2015) Aqueous carbonation of steel slag: a kinetics study. ISIJ Int 55(11):2509–2514

    Article  CAS  Google Scholar 

  • Tu TA, Huan TG, Huynh NNT, Son NK (2019) Characterization of carbonated steelmaking slag and its potential application in construction. Vietnam J Sci Technol. 57(3A):61–68

    Article  Google Scholar 

  • Uibu M, Kuusik R, Andreas L, Kirsimae K (2011) The CO2-binding by Ca-Mg-silicates in direct aqueous carbonation of oil shale ash and steel slag. Energy Procedia. 4:925–932

    Article  CAS  Google Scholar 

  • Ukwattage NL, Ranjith PG, Li X (2017) Steel-making slag for mineral sequestration of carbon dioxide by accelerated carbonation. Measurement 97:15–22

    Article  Google Scholar 

  • Veetil SP, Hitch M (2020) Recent developments and challenges of aqueous mineral carbonation: a review. Int J Environ Sci Technol 17:4359–4380

    Article  CAS  Google Scholar 

  • Woodall CM, McQueen N, Pilorge H, Wilcox J (2019) Utilization of mineral carbonation products: current state and potential. Greenhouse Gas Sci Technol. 9:1096–1113

    Article  CAS  Google Scholar 

  • Yadav S, Mehra A (2017) Experimental study of dissolution of minerals and CO2 sequestration in steel slag. Waste Manage 64:348–357

    Article  CAS  Google Scholar 

  • Yadav VS, Prasad M, Khan J, Amritphale SS, Singh M, Raju CB (2010) Sequestration of carbon dioxide (CO2) using red mud. J Hazard Mater 176(1–3):1044–1050

    Article  CAS  Google Scholar 

  • Yan J, Zhang Z (2019) Carbon capture, utilization and storage (CCUS). Appl Energy 235:1289–1299

    Article  CAS  Google Scholar 

  • Zhang H, Zuo Q, Wei C, Lin X, Dong J, Liao C, Xu A (2020) Closed-circulating CO2 sequestration process evaluation utilizing wastes in steelmaking plant. Sci Total Environ 738:139747

    Article  CAS  Google Scholar 

  • Zhao Q, Liu C, Gao T, Gao L, Saxenc H, Zevenhoven R (2019) Remediation of stainless steel slag with MnO for CO2 mineralization. Process Saf Environ 127:1–8

Download references

Funding

The authors are thankful to “Department of Science and Technology” (DST), New Delhi, India for financial support (Ref N0.DST/IS-STAC/CO2-SR-56/09).

Author information

Authors and Affiliations

Authors

Contributions

AR was involved in conceptualization, fund acquisition, administration, supervision of the project, and reviewing the original draft. KP was also involved in conceptualization, investigation, methodology, project administration, supervision, visualization, and reviewing the original draft. TDRR performed investigation, formal analysis, resource and software procurement, validation, visualization, and writing the draft.

Corresponding author

Correspondence to Tamilselvi Dananjayan RushendraRevathy.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

RushendraRevathy, T.D., Ramachandran, A. & Palanivelu, K. Utilization of steelmaking slag for carbon capture and storage with flue gas. Environ Sci Pollut Res 29, 51065–51082 (2022). https://doi.org/10.1007/s11356-021-17493-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-17493-4

Keywords

Navigation