Log in

Carbon Dioxide Sequestration via Steelmaking Slag Carbonation in Alkali Solutions: Experimental Investigation and Process Evaluation

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Carbon dioxide mineral sequestration with steelmaking slag is a promising method for reducing carbon dioxide in a large-scale setting. Existing calcium oxide or calcium hydroxide in steelmaking slag can be easily leached by water, and the formed calcium carbonate can be easily wrapped on the surface of unreacted steelmaking slag particles. Thus, further increase in the carbonation reaction rate can be prevented. Enhanced carbon dioxide mineral sequestration with steelmaking slag in dilute alkali solution was analysed in this study through experiments and process evaluation. Operating conditions, namely alkali concentration, reaction temperature and time, and liquid-to-solid ratio, were initially investigated. Then, the material and energy balance of the entire process was calculated, and the net carbon dioxide sequestration efficiency at different reaction times was evaluated. Results showed that dilute alkali solution participated in slowing down the leaching of active calcium in the steelmaking slag and in significantly improving carbonation conversion rate. The highest carbonation conversion rate of approximately 50% can be obtained at the optimal conditions of 20 g/L alkali concentration, 2 mL/L liquid-to-solid ratio, and 70 °C reaction temperature. Carbonation reaction time significantly influences the net carbon dioxide sequestration efficiency. According to calculation, carbon dioxide emission of 52.6 kg/t-slag was avoided at a relatively long time of 120 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K.S. Lackner, Annu. Rev. Energy Environ. 27, 193 (2002)

    Article  Google Scholar 

  2. K.S. Lackner, Science 300, 1677 (2003)

    Article  Google Scholar 

  3. A. Sanna, M. Uibu, G. Caramanna, R. Kuusikand, M.M. Maroto-Valera, Chem. Soc. Rev. 43, 8049 (2014)

    Article  Google Scholar 

  4. J. Sipilä, S. Teir, R. Zevenhoven, Åbo Akademi Rep. VT. 1, 12 (2008)

    Google Scholar 

  5. E.R. Bobicki, Q.X. Liu, Z.H. Xu, H.B. Zeng, Prog. Energy Combust. 38, 302 (2012)

    Article  Google Scholar 

  6. W.J.J. Huijgen, G. Witkamp, R. Comans, Environ. Sci. Technol. 39, 9676 (2005)

    Article  Google Scholar 

  7. S. Eloneva, S. Teir, J. Salminen, C.J. Fogelholm, R. Zevenhoven, Ind. Eng. Chem. Res. 47, 7104 (2008)

    Article  Google Scholar 

  8. Y. Sun, M.S. Yao, J.P. Zhang, G. Yang, Chem. Eng. J. 173, 437 (2011)

    Article  Google Scholar 

  9. W.J. Bao, H.Q. Li, Y. Zhang, Ind. Eng. Chem. Res. 49, 2055 (2010)

    Article  Google Scholar 

  10. W.J. Bao, H.Q. Li, Y. Zhang, Greenh. Gases. 4, 785 (2014)

    Article  Google Scholar 

  11. J. Yu, K. Wang, Energy Fuels 25, 5483 (2011)

    Article  Google Scholar 

  12. S.C. Tian, J.G. Jiang, X.J. Chen, F. Yan, K.M. Li, Chem. Sustain. Chem. 6, 2348 (2013)

    Article  Google Scholar 

  13. W.J.J. Huijgen, R.N.J. Comans, Environ. Sci. Technol. 40, 2790 (2006)

    Article  Google Scholar 

  14. W.J.J. Huijgen, G.J. Ruijg, R.N.J. Comans, G.J. Witkamp, Ind. Eng. Chem. Res. 45, 9184 (2006)

    Article  Google Scholar 

  15. W.J.J. Huijgen, R.N.J. Comans, G.J. Witkamp, Energy Convers. Manag. 48, 1923 (2007)

    Article  Google Scholar 

  16. J.K. Stolaroff, G.V. Lowry, D.W. Keith, Energy Convers. Manag. 46, 687 (2005)

    Article  Google Scholar 

  17. E.E. Chang, C.H. Chen, Y.H. Chen, S.Y. Pan, P.C. Chiang, J. Hazard. Mater. 186, 558 (2011)

    Article  Google Scholar 

  18. S.Y. Pan, E.G. Eleazar, E.E. Chang, Y.P. Lin, H. Kim, P.C. Chiang, Appl. Energy 148, 23 (2015)

    Article  Google Scholar 

  19. S.Y. Pan, Y.H. Chen, C.D. Chen, A.L. Shen, M. Lin, P.C. Chiang, Environ. Sci. Technol. 49, 12380 (2015)

    Article  Google Scholar 

  20. S.Y. Pan, A.M.L. Lafuente, P.C. Chiang, Appl. Energy 170, 269 (2016)

    Article  Google Scholar 

  21. R.M. Santos, D. François, G. Mertens, J. Elsen, T.V. Gerven, Appl. Thermal. Eng. 5, 154 (2013)

    Article  Google Scholar 

  22. S. Eloneva, A. Said, C.J. Fogelholm, R. Zevenhoven, Appl. Energy 90, 329 (2012)

    Article  Google Scholar 

  23. N.J. Du, L.J. Wang, Inorg. Chem. Ind. 41, 38 (2009)

    Google Scholar 

  24. H.P. Mattila, R. Zevenhoven, Chem. Sustain. Chem. 7, 903 (2014)

    Article  Google Scholar 

  25. Y.Z. Chen, X.Q. Wang, Petro-Chem. Equip. Technol. 18, 13 (1997)

    Google Scholar 

  26. S.Q. Yuan, W.L. Cao, Fluid Eng. 20, 35 (1999)

    Google Scholar 

  27. Q. Zheng, P. Liu, Y. Fang, Mod. Mach. 6, 87 (2010)

    Google Scholar 

  28. Q.S. Ding, J. Filtr. Sep. 19, 41 (2009)

    Google Scholar 

  29. S. Datta, M.P. Henry, Y.J. Lin, A.T. Fracaro, C.S. Millard, S.W. Snyder, Ind. Eng. Chem. Res. 52, 15177 (2013)

    Article  Google Scholar 

  30. C.M. Ma, Q.S. Ge, Adv. Clim. Change Res. 5, 92 (2014)

    Article  Google Scholar 

  31. M.A. Gadalla, Z. Olujic, P.J. Jansens, Environ. Sci. Technol. 39, 6860 (2005)

    Article  Google Scholar 

  32. R. Smith, O. Delaby, Chem. Eng. Res. Des. 69A, 492 (1991)

    Google Scholar 

  33. O. Delaby, R. Smith, Chem. Eng. Res. Des. 73B, 21 (1995)

    Google Scholar 

  34. J. Xu, Y. Fan, Prog. Res. Clim. Change 9, 341 (2013)

    Google Scholar 

  35. W. Wang, D. Jiang, D.J. Chen, Z.B. Chen, W.J. Zhou, B. Zhu, J. Clean. Prod. 112, 787 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21300212).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Quan Li.

Additional information

Available online at http://springer.longhoe.net/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, CY., Bao, WJ., Guo, ZC. et al. Carbon Dioxide Sequestration via Steelmaking Slag Carbonation in Alkali Solutions: Experimental Investigation and Process Evaluation. Acta Metall. Sin. (Engl. Lett.) 31, 771–784 (2018). https://doi.org/10.1007/s40195-017-0694-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-017-0694-0

Keywords

Navigation