Log in

The Serotonin System in Mammalian Oogenesis

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Transmitters, particularly serotonin, not only have the classical function of transmitting nerve impulses, but also take part in a whole series of regulatory processes throughout ontogeny, including those occurring long before formation of the nervous system. The structure and function of the serotonin system in mammalian oogenesis are considered, along with the sources and mechanisms of accumulation of the transmitter in oocytes and the expression of the components of the serotonin system – receptors, synthesis and degradation enzymes, and membrane and vesicular transporters in cells in the female mammalian reproductive system. Data on the influences of serotonin reuptake inhibitors (SERT) on oogenesis and embryogenesis are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aktas, H., Wheeler, M. B., First, N. L., and Leibfried-Rutledge, M. L., “Maintenance of meiotic arrest by increasing [cAMP]i may have physiological relevance in bovine oocytes,” J. Reprod. Fertil., 105, 237–245 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Aluigi, M. G., Diaspro, A., Ramoino, P., et al., “The sea urchin, Paracentrotus lividus, as a model to investigate the onset of molecules immunologically related to the α-7 subunit of nicotinic receptors during embryonic and larval development,” Curr. Drug Targets, 13, No. 5, 587–593 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Amenta, F., Vega, J. A., Ricci, A., and Collier, W. L., “Localization of 5-hydroxytryptamine- like immunoreactive cells and nerve fibers in the rat female reproductive system,” Anat. Rec., 233, No. 3, 478–484 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Amireault, P. and Dubé, F., “Intracellular cAMP and calcium signaling by serotonin in mouse cumulus-oocyte complexes,” Mol. Pharmacol., 68, No. 6, 1678–1687 (2005a).

    Article  CAS  PubMed  Google Scholar 

  • Amireault, P. and Dubé, F., “Serotonin and its antidepressant-sensitive transport in mouse cumulus-oocyte complexes and early embryos,” Biol. Reprod., 73, No. 2, 358–365 (2005b).

    Article  CAS  PubMed  Google Scholar 

  • Amireault, P., Sibon, D., and Côté, F., “Life without peripheral serotonin: insights from tryptophan hydroxylase 1 knockout mice reveal the existence of paracrine/autocrine serotonergic networks,” ACS Chem. Neurosci, 4, No. 1, 64–71 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Azmitia, E. C., “Modern views on an ancient chemical: serotonin effects on cell proliferation, maturation, and apoptosis,” Brain Res. Bull., 56, No. 5, 413–424 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Basu, B., Desai, R., Balaji, J., et al., “Serotonin in pre-implantation mouse embryos is localized to the mitochondria and can modulate mitochondrial potential,” Reproduction, 135, No. 5, 657–669 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Batta, S. K. and Knudsen, J. F., “Calcium concentration in cumulus enclosed oocytes of rats after treatment with pregnant mares serum,” Biol. Reprod., 22, 243–246 (1980).

    Article  CAS  PubMed  Google Scholar 

  • Beyer, T., Danilchik, M., Thumberger, T., et al., “Serotonin signaling is required for Wnt-dependent GRP specification and leftward flow in Xenopus,” Curr. Biol., 22, 33–39 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Bòdis, J., Bognàr, Z., Hartmann, G., et al., “Measurement of noradrenaline, dopamine and serotonin contents in follicular fluid of human graafian follicles after superovulation treatment,” Gynecol. Obstet. Inves, 33, No. 3, 165–167 (1992).

    Article  Google Scholar 

  • Bòdis, J., Török, A., Tinneberg, H. R., et al., “Serotonin induces progesterone release from human granulosa cells in a superfused granulosa cell system,” Arch. Gynecol. Obstetr., 253, No. 2, 59–64 (1993).

    Article  Google Scholar 

  • Burnik-Papler, T., Vrtacnik-Bokal, E., Maver, A., et al., “Transcriptomic analysis and meta-analysis of human granulosa and cumulus cells,” PLoS One, 10, No. 8, e0136473 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Buznikov, G. A. and Manukhin, B. N., “Effects of serotonin on embryonic motor function in nudibranch mollusks,” Zh. Obshch. Biol., 21, No. 5, 347–352 (1960).

    Google Scholar 

  • Buznikov, G. A. and Shmukler, Yu. B., “Effects of antitransmitter drugs on intracellular connections in early sea urchin embryos,” Ontogenez, 9, No. 2, 173–178 (1978).

    CAS  PubMed  Google Scholar 

  • Buznikov, G. A., “Preneural transmitters as regulators of embryogenesis. Current state of the problem,” Ontogenez, 38, No. 4, 262–270 (2007).

    CAS  PubMed  Google Scholar 

  • Buznikov, G. A., Low Molecular Weight Regulators of embryonic Development, Nauka, Moscow (1967).

    Google Scholar 

  • Buznikov, G. A., Malchenko, L. A., Nikitina, L. A., et al., “Effects of neurotransmitters and their antagonists on oocyte maturation. 1. Effects of serotonin and its antagonists on the sensitivity of sea urchin oocytes to 1-methyladenine,” Ontogenez, 21, 375–380 (1990).

    Google Scholar 

  • Buznikov, G. A., Marshak, T. L., Malchenko, L. A., et al., “Serotonin and acetylcholine modulate the sensitivity of early sea urchin embryos to protein kinase C activators,” Comp. Biochem. Physiol., 120A, No. 2, 457–462 (1998).

    Article  CAS  Google Scholar 

  • Buznikov, G. A., Neurotransmitters in Embryogenesis, Nauka, Moscow (1987).

    Google Scholar 

  • Buznikov, G. A., Nikitina, L. A., Galanov, A. Y., et al., “The control of oocyte maturation in the starfish and amphibians by serotonin and its antagonists,” Int. J. Dev. Biol., 37, 363–364 (1993).

    CAS  PubMed  Google Scholar 

  • Buznikov, G. A., Peterson, R. E., Nikitina, L. A., et al., “The pre-nervous serotonergic system of develo** sea urchin embryos and larvae: pharmacologic and immunocytochemical evidence,” Neurochem. Res., 30, No. 6–7, 825–837 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Cabrera, R. M., Lin, Y.-L., Law, E., et al., “The teratogenic effects of sertraline in mice,” Birth Defects Res., 112, No. 13, 1014–1024 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Capasso, A., Creti, P., De Petrocellis, B., et al., “Role of dopamine and indolamine derivatives in the regulation of sea urchin adenylate cyclase,” Biochem. Biophys. Res. Commun., 154, 758–764 (1988).

    Article  CAS  PubMed  Google Scholar 

  • Cerdà, J., Subhedar, N., Reich, G., et al., “Oocyte sensitivity to serotonergic regulation during the follicular cycle of the teleost Fundulus heteroclitus,” Biol. Reprod., 59, No. 1, 53–61 (1998).

    Article  PubMed  Google Scholar 

  • Chaiyamoon, A., Tinikul, R., Chaichotranunt, S., et al., “Distribution and dynamic expression of serotonin and dopamine in the nervous system and ovary of Holothuria scabra during ovarian maturation,” J.Comp. Physiol. A, 204, 391–407 (2018).

    Article  CAS  Google Scholar 

  • Cho, W. K., Stern, S., and Biggers, J. D., “Inhibitory effect of dibutyryl cAMP on mouse oocyte maturation in vitro,” J. Exp. Zool., 187, 383–386 (1974).

    Article  CAS  PubMed  Google Scholar 

  • Čikoš, Š., Veselá, J., Il’kova, G., et al., “Expression of beta adrenergic receptors in mouse oocytes and preimplantation embryos,” Mol. Reprod. Dev., 71, 145–153 (2005).

    Article  PubMed  Google Scholar 

  • Clausell, D. E. and Soliman, K. F., “Ovarian serotonin content in relation to ovulation,” Experientia, 34, No. 3, 410–411 (1978).

    Article  CAS  PubMed  Google Scholar 

  • Collart, C., Owens, N. D. L., Bhaw-Rosun, L., et al., “High-resolution analysis of gene activity during the Xenopus mid-blastula transition,” Development, 141, No. 9, 1927–1939 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Côté, F., Fligny, C., Bayard, E., et al., “Maternal serotonin is crucial for murine embryonic development,” Proc. Natl. Acad. Sci. USA, 104, No. 1, 329–334 (2007).

    Article  PubMed  Google Scholar 

  • Creeley, C. E. and Denton, L. K., “Use of prescribed psychotropics during pregnancy: A systematic review of pregnancy, neonatal, and childhood outcomes,” Brain Sci., 9, No. 9, 235 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  • Cunha, V., Rodrigues, P., Santos, M. M., et al., “Fluoxetine modulates the transcription of genes involved in serotonin, dopamine and adrenergic signalling in zebrafish embryos,” Chemosphere, 191, 954–961 (2017).

    Article  PubMed  Google Scholar 

  • Darszon, A., Labarca, P., Nishigaki, T., and Espinosa, F., “Ion channels in sperm physiologym,” Physiol. Rev., 79, 481–510 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Dekel, N. and Beers, W. H., “Rat oocyte maturation in vitro: Relief of cyclic AMP inhibition by gonadotropins,” Proc. Natl. Acad. Sci. USA, 75, 4369–4373 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devic, E., Paquereau, L., Steinberg, R., et al., “Early expression of a beta1- adrenergic receptor and catecholamines in Xenopus oocytes and embryos,” FEBS Lett., 417, 184–190 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Dietrich, J. E. and Hiiragi, T., “Stochastic patterning in the mouse preimplantation embryo,” Development, 134, No. 23, 4219–4231 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Dubé, F. and Amireault, P., “Local serotonergic signaling in mammalian follicles, oocytes and early embryos,” Life Sci., 81, 1627–1637 (2007).

    Article  PubMed  Google Scholar 

  • Frazer, A. and Hensler, J. G., “Serotonin receptors,” in: Basic Neurochemistry: Molecular, Cellular and Medical Aspects, Siegel, G. J. et al. (eds.), Lippincott-Raven, Philadelphia (1999); 6th ed.

  • Gardner, D. K., Lane, M., Calderon, I., and Leeton, J., “Environment of the preimplantation human embryo in vivo: Metabolite analysis of oviduct and uterine fluids and metabolism of cumulus cells,” Fertil. Steril., 65, 349–353 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Garnerot, F., Pellerin, J., Blaise, C., and Mathieu, M., “Immunohistochemical localization of serotonin (5-hydroxytryptamine) in the gonad and digestive gland of Mya arenaria (Mollusca: Bivalvia),” Gen. Comp. Endocrinol., 149, No. 3, 278–284 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Giannaccini, G., Betti, L., Palego, L., et al., “Human serotonin transporter expression during megakaryocytic differentiation of MEG-01 cells,” Neurochem. Res., 35, No. 4, 628–635 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Graveleau, C., Paust, H. J., Schmidt-Grimminger, D., and Mukhopadhyay, A. K., “Presence of a 5-HT7 receptor positively coupled to adenylate cyclase activation in human granulosa-lutein cells,” J. Clin. Endocrinol. Metab., 85, No. 3, 1277–1286 (2000).

    CAS  PubMed  Google Scholar 

  • Grigor’ev, N. G., “The cortical layer of the cytoplasm – a possible location for the action of preneural transmitters,” Zh. Evol. Biokhim. Fiziol., 24, No. 5, 625–629 (1988).

    PubMed  Google Scholar 

  • Hagström, B. E. and Lönning, S., “The sea urchin egg as a testing object in toxicology,” Acta Pharmacol. Toxicol. (Copenh.), 1, 3–49 (1973).

    Google Scholar 

  • Hamdan, F. F., Ungrin, M. D., Abramovitz, M., and Ribeiro, P., “Characterization of a novel serotonin receptor from Caenorhabditis elegans: cloning and expression of two splice variants,” J. Neurochem., 72, 1372–1383 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Hinckley, M., Vaccari, S., Horner, K., et al., “The G-protein-coupled receptors GPR3 and GPR12 are involved in cAMP signaling and maintenance of meiotic arrest in rodent oocytes,” Dev. Biol., 287, 249–261 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Hohmann, S., Schweinfurth, N., Lau, T., et al., “Differential expression of neuronal dopamine and serotonin transporters DAT and SERT in megakaryocytes and platelets generated from human MEG-01 megakaryoblasts,” Cell Tissue Res., 346, No. 2, 151–161 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Homburger, F., Chaube, S., Eppenberger, M., et al., “Susceptibility of certain inbred strains of hamsters to teratogenic effects of thalidomide,” Toxicol. Appl. Pharmacol., 7, No. 5, 686–693 (1965).

    Article  CAS  PubMed  Google Scholar 

  • Hoyer, D., Clarke, D. E., Fozard, J. R., et al., “International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (serotonin),” Pharmacol. Rev., 46, No. 2, 157–203 (1994).

    CAS  PubMed  Google Scholar 

  • Iľkova, G., Rehak, P., Vesela, J., et al., “Serotonin localization and its functional significance during mouse preimplantation embryo development,” Zygote, 12, No. 3, 205–213 (2004).

    Article  Google Scholar 

  • Ivashkin, E., Khabarova, M. Yu., Melnikova, V., et al., “Serotonin mediates maternal effects and directs developmental and behavioral changes in the progeny of snails,” Cell Rep., 12, No. 7, 1144–1158 (2015), https://doi.org/https://doi.org/10.1016/j.celrep.2015.07.022.

  • Jajoo, A., Donlon, C., Shnayder, S., et al., “Sertraline induces DNA damage and cellular toxicity in Drosophila that can be ameliorated by antioxidants,” Sci. Rep., 10, No. 1, 4512 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jequier, E., Robinson, D. S., Lovenberg, W., and Sjoerdsma, A., “Further studies on tryptophan hydroxylase in rat brainstem and beef pineal,” Biochem. Pharmacol., 18, 1071–1081 (1969).

    Article  CAS  PubMed  Google Scholar 

  • Kaihola, H., Yaldir, F. G., Hreinsson, J., et al., “Effects of fluoxetine on human embryo development,” Front. Cell Neurosci., 10, 160 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Katow, H., Yaguchi, S., and Kyozuka, K., “Serotonin stimulates [Ca2+]i elevation in ciliary ectodermal cells of echinoplutei through a serotonin receptor cell network in the blastocoel,” J. Exp. Biol., 210, Pt. 3, 403–412 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Kaur, S., Archer, K. J., Devi, M. G., et al., “Differential gene expression in granulosa cells from polycystic ovary syndrome patients with and without insulin resistance: identification of susceptibility gene sets through network analysis,” J. Clin. Endocrinol. Metab., 97, No. 10, E2016–2021 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kidder, G. M. and Vanderhyden, B. C., “Bidirectional communication between oocytes and follicle cells: Ensuring oocyte developmental competence,” Can. J. Physiol. Pharmacol., 88, No. 4, 399–413 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koppan, M., Bodis, J., Verzar, Z., et al., “Serotonin may alter the pattern of gonadotropin-induced progesterone release of human granulosa cells in superfusion system,” Endocrine, 24, No. 2, 155–159 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Koshtoyants, Kh. S., Challenges in the Enzyme Chemistry of Arousal and Inhibition and Evolution of Nervous System Functions, USSR Academy of Sciences Press, Moscow (1963).

    Google Scholar 

  • Krantic, S., Dube, F., and Querion, R., and Guerrier, P., “Pharmacology of the serotonin induced meiosis reinitiation of Spisula oocytes,” Dev. Biol, 146, 491–497 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Lauder, J. M., Moiseiwitsch, J., Liu, J., and Wilkie, M. B., “Serotonin in development and pathophysiology,” in: Brain Lesions in the Newborn, Lou, H. C., Griesen, G., Falck Larsen, J. (eds.), Munksgaard, Copenhagen (1994), pp. 60–72 (1994).

  • Lawrence, T. S., Beers, W. H., and Gilula, N. B., “Transmission of hormonal stimulation by cell-to-cell communication,” Nature, 272, 501–506 (1978).

    Article  CAS  PubMed  Google Scholar 

  • Levin, M., Buznikov, G. A., and Lauder, J. M., “Of minds and embryos: left-right asymmetry and the serotonergic controls of pre-neural morphogenesis,” Dev. Neurosci., 28, No. 3, 171–185 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Lister, A., Regan, C., Van Zwol, J., and Van Der Kraak, G., “Inhibition of egg production in zebrafish by fluoxetine and municipal effluents: a mechanistic evaluation,” Aquat. Toxicol., 95, No. 4, 320–329 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Liu, C., Peng, J., Matzuk, M. M., and Yao, H. H.-C., “Lineage specification of ovarian theca cells requires multicellular interactions via oocyte and granulosa cells,” Nat. Commun., 6, 6934 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Loewi, O., “Über humorale übertragbarkeit der Herznervenwirkund. I: Mitteilung,” Pflugers Arch., 189, No. 3, 239–242 (1921).

    Article  Google Scholar 

  • Martynova, L. E., “Gastrulation in the sea urchin Strongylocentrotus droebachiensis in normal conditions and on exposure to various substances,” Ontogenez, 12, 310–315 (1981).

    CAS  Google Scholar 

  • Masseau, I., Bannon, P., Anctil, M., and Dubé, F., “Localization and quantification of gonad serotonin during gametogenesis of the surf clam, Spisula solidissima,” Biol. Bull., 202, No. 1, 23–33 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Misri, S. and Kendrick, K., “Treatment of perinatal mood and anxiety disorders: a review,” Can. J. Psychiatry, 52, No. 8, 489–98 (2007).

    Article  PubMed  Google Scholar 

  • Misri, S., Reebye, P., Kendrick, K., et al., “Internalizing behaviors in 4-year-old children exposed in utero to psychotropic medications,” Am. J. Psychiatry, 163, 1026–1032 (2006).

    Article  PubMed  Google Scholar 

  • Moore, C. J., DeLong, N. E., Chan, K. A., et al., “Perinatal administration of a selective serotonin reuptake inhibitor induces impairments in reproductive function and follicular dynamics in female rat offspring,” Reprod. Sci., 22, No. 10, 1297–1311 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Muzik, M. and Hamilton, S. E., “Use of antidepressants during pregnancy? what to consider when weighing treatment with antidepressants against untreated depression,” Matern. Child Health J., 20, No. 11, 2268–2279 (2016).

    Article  PubMed  Google Scholar 

  • Nevels, R. M., Gontkovsky, S. T., and Williams, B. E., “Paroxetine – The antidepressant from hell? Probably not, but caution required,” Psychopharmacol. Bull., 46, No. 1, 77–104 (2016).

    PubMed  PubMed Central  Google Scholar 

  • Nikishin, D. A., Alyoshina, N. M., and Shmukler, Yu. B., “Synthesis and membrane transport of serotonin in the develo** mouse ovarian follicle,” Dokl. Akad. Nauk., 478, No. 1, 103–106 (2018a).

    Google Scholar 

  • Nikishin, D. A., Alyoshina, N. M., Semenova, M. L., and Shmukler, Yu. B., “The location of serotonin and its membrane transporter in the mouse ovary,” in: Contemporary Science: Current Challenges in the Theory and Practice: Natural and Technical Sciences Series, No. 11 (2017a), pp. 22–25.

  • Nikishin, D. A., Alyoshina, N. M., Semenova, M. L., and Shmukler, Yu. B., “Dynamics of expression of components of the serotoninergic system in granulosa cells in thee develo** ovarian follicles and luteinization,” Geny Kletki, 12, No. 4, 37–42 (2017b).

    Google Scholar 

  • Nikishin, D. A., Alyoshina, N. M., Semenova, M. L., and Shmukler, Yu. B., “Effects of serotonin on the expression of markers of the functional state of granulosa cells in in vitro cultures,” in: Basic Aspects of Mental Health, No. 4 (2018c), pp. 13–17.

  • Nikishin, D. A., Alyoshina, N. M., Semenova, M. L., and Shmukler, Yu. B., “Analysis of expression and functional activity of aromatic L-amino acid decarboxylase (DDC) and serotonin transporter (SERT) as potential sources of serotonin in mouse ovary,” Int. J. Mol. Sci., 20, 3070 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  • Nikishin, D. A., Ivashkin, E. G., Mikaelyan, A. S., and Shmukler, Y. B., “Expression of serotonin receptors during early embryogenesis,” in: Simpler Nervous Systems, IX East European Conference of the International Society for Invertebrate Neurobiology (2009), p. 70 (Abstract).

  • Nikishin, D. A., Khramova, Yu. V., Alyoshina, N. M., et al., “Oocytemediated effects of serotonin on the functional state of granulosa cells, Ontogenez, 52, No. 2, 000-000 (2021), in press.

    CAS  Google Scholar 

  • Nikishin, D. A., Khramova, Yu. V., Bagaeva, T. S., et al., “Expression of components of the serotoninergic system in folliculogenesis and the preimplantation development of mice,” Ontogenez, 49, No. 3, 208–216 (2018b).

    Google Scholar 

  • Nikishin, D. A., Kremnyov, S. V., Konduktorova, V. V., and Shmukler, Yu. B., “Expression of serotonergic system components during early Xenopus embryogenesis,” Int. J. Dev. Biol., 56, 385–391 (2012a).

    Article  CAS  PubMed  Google Scholar 

  • Nikishin, D. A., Milošević, I., Gojković, M., et al., “Expression and functional activity of neurotransmitter system components in sea urchins’ early development,” Zygote, 24, No. 2, 206–218 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Nikishin, D. A., Semenova, M. N., and Shmukler, Yu. B., “Expression of transmitter receptor genes in the early development of the sea urchin Paracentrotus lividus,” Ontogenez, 43, No. 3, 212–216 (2012b).

    CAS  PubMed  Google Scholar 

  • Nikitina, L. A., Malchenko, L. A., Teplits, N. A., and Buznikov, G. A., “Effects of serotonin and its analogs on oocyte maturation in vitro,” Ontogenez, 19, 336–343 (1988).

    Google Scholar 

  • Nikitina, L. A., Trubnikova, O. B., and Buznikov, G. A., “Effects of neurotransmitters and their antagonists on oocyte maturation. Effects of serotonin antagonists on the in vitro maturation of amphibian oocytes,” Ontogenez, 24, 229–236 (1993).

    Google Scholar 

  • Niu, W., Wang, Y., Wang, Z., et al., “JNK signaling regulates E-cadherin junctions in germline cysts and determines primordial follicle formation in mice,” Development, 143, 1778–1787 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Noorlander, C. W., Ververs, F. F. T., Nikkels, P. G. J., et al., “Modulation of serotonin transporter function during fetal development causes dilated heart cardiomyopathy and lifelong behavioral abnormalities,” PLoS One, 3, No. 7, e2782 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  • Owens, N. D., Blitz, I. L., Lane, M. A., et al., “Measuring absolute RNA copy numbers at high temporal resolution reveals transcriptome kinetics in development,” Cell Rep., 14, No. 3, 632–647 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peters, M. A., Walenkamp, A. M., Kema, I. P., et al., “Dopamine and serotonin regulate tumor behavior by affecting angiogenesis,” Drug Resist. Updat., 17, No. 4–6, 96–104 (2014).

    Article  PubMed  Google Scholar 

  • Preis, K. A., Seidel, G., Jr., and Gardner, D. K., “Metabolic markers of developmental competence for in vitro-matured mouse oocytes,” Reproduction, 130, 475–483 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Ram, D. and Gandotra, S., “Antidepressants, anxiolytics, and hypnotics in pregnancy and lactation,” Indian J. Psychiatry, 57, Suppl. 2, S354–S371 (2015).

    PubMed  PubMed Central  Google Scholar 

  • Robson, J. M. and Sullivan, F. M., “Serotonin as a teratogen,” BMJ, 5379, 370 (1964).

    Article  Google Scholar 

  • Rostomyan, M. A., Abramyan, K. S., Buznikov, G. A., and Gusareva, E. V., “Electron cytochemical detection of adenylate cyclase in early sea urchin embryos,” Tsitologiya, 27, 877–881 (1985).

    CAS  Google Scholar 

  • Rudnick, G. and Nelson, P. J., “Platelet 5-hydroxytryptamine transport, an electroneutral mechanism coupled to potassium,” Biochemistry, 17, No. 22, 4739–42 (1978).

  • Rudnick, G. and Sandtner, W., “Serotonin transport in the 21st century,” J. Gen. Physiol., 151, No. 11, 1248–1264 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salustri, A., Yanagishita, M., Underhill, C. B., et al., “Localization and synthesis of hyaluronic acid in the cumulus cells and mural granulo-sa cells of the preovulatory follicle,” Dev. Biol., 151, No. 2, 541–551 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Sarrouilhe, D. and Mesnil, M., “Serotonin and human cancer: A critical view,” Biochimie, 161, 46–50 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Session, A. M., Uno, Y., Kwon, T., et al., “Genome evolution in the allotetraploid frog Xenopus laevis,” Nature, 538, No. 7625, 336–343 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheng, Y., Wang, L., Liu, X. S. J. S., et al., “A serotonin receptor antagonist induces oocyte maturation in both frogs and mice: evidence that the same G protein-coupled receptor is responsible for maintaining meiosis arrest in both species,” J. Cell Physiol., 202, 777–786 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Shmukler, Y. and Nikishin, D., “Transmitters in blastomere interactions,” in: Cell Interactions, Gowder, S. (ed.), InTech (2012), Chpt. 2, pp. 31–65.

  • Shmukler, Yu. B. and Nikishin, D. A., “Transmitter systems in embryogenesis – current state of the problem,” Usp. Fiziol. Nauk., 49, No. 4, 81–92 (2018).

    Google Scholar 

  • Shmukler, Yu. B., “Intercellular interactions in early sea urchin embryos. III. Effects of neuropharmacological drugs on cleavage type in Scaphechinus mirabilis half-embryos,” Ontogenez, 12, No. 4, 404–409 (1981).

    CAS  Google Scholar 

  • Shmukler, Yu. B., “On the possibility of membrane reception of neurotransmitter in sea urchin early embryos,” Comp. Biochem. Physiol., 106C, No. 1, 269–273 (1993).

    CAS  Google Scholar 

  • Shmukler, Yu. B., “Specific binding of [3H]8-OH-DPAT by early Strongylocentrotus intermedius sea urchin embryos,” Biol. Membrany, 9, No. 10–11, 1167–1169 (1992).

    CAS  Google Scholar 

  • Shmukler, Yu. B., Buznikov, G. A., and Whitaker, M. J., “Action of serotonin antagonists on cytoplasmic calcium level in early embryos of sea urchin Lytechinus pictus,” Int. J. Dev. Biol., 42, No. 3, 179–182 (1999).

    Google Scholar 

  • Shmukler, Yu. B., Buznikov, G. A., Grigor’ev, N. G., and Malchenko, L. A., “Effects of cyclic nucleotides on the sensitivity of early sea urchin embryos to cytotoxic neuropharmacological drugs,” Byull. Eksperim. Biol. Med., 97, No. 3, 354–355 (1984).

    CAS  Google Scholar 

  • Shmukler, Yu. B., Grigoriev, N. G., Buznikov, G. A., and Turpaev, T. M., “Regulation of cleavage divisions: participation of ‘prenervous’ neurotransmitters coupled with second messengers,” Comp. Biochem. Physiol., 83C, No. 2, 423–427 (1986).

    CAS  Google Scholar 

  • Shuey, D. L., Sadler, T. W., Tamir, H., and Lauder, J. M., “Serotonin and morphogenesis. Transient expression of serotonin uptake and binding protein during craniofacial morphogenesis in the mouse,” Anat. Embryol. (Berl.), 187, No. 1, 75–85 (1993).

    CAS  Google Scholar 

  • Silvestre, F., Boni, R., Fissore, R. A., and Tosti, E., “Ca2+ signaling during maturation of cumulus–oocyte complex in mammals,” Mol. Reprod. Dev., 78, 744–756 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Sneddon, J. M., “Sodium-dependent accumulation of 5-hydroxytryptamine by rat blood platelets,” Br. J. Pharmacol., 37, No. 3, 680–688 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stępińska, U., Kuwana , T., and Olszańska, B., “Serotonin receptors are selectively expressed in the avian germ cells and early embryos,” Zygote, 23, No. 3, 394–405 (2015).

    Article  PubMed  Google Scholar 

  • Stricker, S. A. and Smythe, T. L., “5-HT causes an increase in cAMP that stimulates, rather than inhibits, oocyte maturation in marine nemertean worms,” Development, 128, No. 8, 1415–1427 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Stricker, S. A., “Comparative biology of calcium signaling during fertilization and egg activation in animals,” Dev. Biol., 211, 157–176 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Tan, M. H., Au, K. F., Yablonovitch, A. L., et al., “RNA sequencing reveals a diverse and dynamic repertoire of the Xenopus tropicalis transcriptome over development,” Genome Res., 23, No. 1, 201–216 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka, E., Baba, N., Toshida, K., and Suzuki, K., “Serotonin stimulates steroidogenesis in rat preovulatory follicles: involvement of 5-HT2 receptor,” Life Sci., 53, 563–570 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Terranova, P. F., Uilenbroek, J. T., Saville, L., et al., “Serotonin enhances oestradiol production by hamster preovulatory follicles in vitro: effects of experimentally induced atresia,” J. Endocrinol., 125, 433–438 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Tinikul, Y., Joffre Mercier, A., Soonklang, N., and Sobhon, P., “Changes in the levels of serotonin and dopamine in the central nervous system and ovary, and their possible roles in the ovarian development in the giant freshwater prawn, Macrobrachium rosenbergii,” Gen. Comp. Endocrinol., 158, No. 3, 250–258 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Vesela, J., Rehak, P., Mihalik, J., et al., “Expression of serotonin receptors in mouse oocytes and preimplantation embryos,” Physiol. Res., 52, 223–228 (2003).

    CAS  PubMed  Google Scholar 

  • Voronezhskaya, E. E., Khabarova, M. Yu., and Nezlin, L. P., “Apical sensory neurones mediate developmental retardation induced by conspecific environmental stimuli in freshwater pulmonate snails,” Development, 131, No. 15, 3671–80 (2004), https://doi.org/https://doi.org/10.1242/dev.01237.

  • Wang, Q. and He, M., “Molecular characterization and analysis of a putative 5-HT receptor involved in reproduction process of the pearl oyster Pinctada fucata,” Gen. Comp. Endocrinol., 204, 71–79 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Yang, K., Hitomi, M., and Stacey, D. W., “Variations in cyclin D1 levels through the cell cycle determine the proliferative fate of a cell,” Cell Division, 1, 32 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zatylny, C., Durantou, F., Boucaud-Camou, E., and Henry, J., “Evidence of 5-hydroxytryptamine synthesis in the follicles of Sepia officinalis and direct involvement in the control of egg-laying,” Mol. Reprod. Dev., 55, No. 2, 182–188 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. B. Shmukler.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 71, No. 3, pp. 306–320, May–June, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shmukler, Y.B., Alyoshina, N.M., Malchenko, L.A. et al. The Serotonin System in Mammalian Oogenesis. Neurosci Behav Physi 52, 52–61 (2022). https://doi.org/10.1007/s11055-022-01207-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-022-01207-5

Keywords

Navigation