Log in

Investigation on the effect of different coated absorber plates on the thermal efficiency of the flat-plate solar collector

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The aim of the present work is to compare thermal efficiency of three flat-plate collectors, which are different in the type of coatings used in the absorber plate. The thermal efficiency of the collector was investigated using three types of absorber plate: the black painted, the black chrome coating, and the carbon coating. The thermal performance of the collectors was considered based on American Society of Heating, Refrigerating and Air-Conditioning Engineers Standard 93 (2010). The volume flow rate varied from 0.5 to 1.5 L min−1. The field emission scanning electron microscope images demonstrated that the carbon coating had high absorption due to trap** the light and avoiding the reflection of the light. The collector with the carbon-coated absorber plate at the flow rate of 1.5 L min−1 has the maximum thermal efficiency of approximately 69.4%. Furthermore, the thermal efficiency of the carbon-coated absorber plate and black chrome-coated absorber plate is averagely 13% and 11.3% higher than the black-painted absorber plate, respectively. Additionally, the removed energy parameter (\(F_{\text{R}} U_{\text{L}}\)) at the flow rate of 1.5 L min−1 decreases approximately 35.4% for the collector with the carbon-coated absorber plate and 28.4% for the collector with the black chrome-coated absorber plate compared to the black-painted absorber plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

A c :

Area of the absorber plate, (m2)

D :

Riser tube diameter, (m)

h :

Heat transfer coefficient, (W m−2K−1)

Q u :

The useful energy gain, (W)

T a :

Ambient temperature, (K)

T o :

Outlet temperature, (K)

T in :

Inlet temperature, (K)

T f,o :

Outlet fluid temperature, (K)

T f,i :

Inlet fluid temperature, (K)

T f,o,initial :

Outlet initial fluid temperature, (K)

C p :

Specific heat, (J kg−1)

G :

Solar radiation, (W m−2)

F R :

Heat removal factor

\({\dot{m}}\) :

Mass flow rate, (kg s−1)

U L :

Heat loss coefficient, (W m−2 K−1)

a:

Ambient

f:

Fluid

e:

Emissivity

i:

Inlet

o:

Outlet

\(\alpha\) :

Plate absorptance

\(\eta\) :

Thermal efficiency of collector

\(\tau\) :

Glass cover transmittance

\(\delta R\) :

Uncertainty in the result, generic

\(\delta X_{\text{j}}\) :

Uncertainty in the jth variable

FPC:

Flat-plate collector

Re:

Reynolds number, \(\rho UD_{\text{h}} /\mu_{\text{f}}\)

PH:

Power of hydrogen

References

  1. Duffie JA, Beckman, WA, Solar engineering of thermal processes, New York: Wiley; 2013. https://www.wiley.com/en-us/Solar+Engineering+of+Thermal+Processes,+4th+Edition-p-9780470873663. Accessed 17 Apr 2019.

  2. Sakhaei SA, Valipour MS. Performance enhancement analysis of the flat plate collectors: a comprehensive review. Renew Sustain Energy Rev. 2019;102:186–204. https://doi.org/10.1016/J.RSER.2018.11.014.

    Article  CAS  Google Scholar 

  3. Asadi J, Amani P, Amani M, Kasaeian A, Bahiraei M. Thermo-economic analysis and multi-objective optimization of absorption cooling system driven by various solar collectors. Energy Convers Manag. 2018;173:715–27. https://doi.org/10.1016/j.enconman.2018.08.013.

    Article  Google Scholar 

  4. Nazari S, Safarzadeh H, Bahiraei M, Experimental and analytical investigations of productivity, energy and exergy efficiency of a single slope solar still enhanced with thermoelectric channel and nanofluid. Renew Energy 2019;729–744. https://doi.org/10.1016/j.renene.2018.12.059.

  5. Jaisankar S, Radhakrishnan TK, Sheeba KN, Suresh S. Experimental investigation of heat transfer and friction factor characteristics of thermosyphon solar water heater system fitted with spacer at the trailing edge of left-right twisted tapes. Energy Convers Manag. 2009;50:2638–49. https://doi.org/10.1016/J.ENCONMAN.2009.06.019.

    Article  Google Scholar 

  6. Ananth J, Jaisankar S. Experimental studies on heat transfer and friction factor characteristics of thermosyphon solar water heating system fitted with regularly spaced twisted tape with rod and spacer. Energy Convers Manag. 2013;73:207–13. https://doi.org/10.1016/J.ENCONMAN.2013.04.022.

    Article  Google Scholar 

  7. García A, Martin RH, Pérez-García J. Experimental study of heat transfer enhancement in a flat-plate solar water collector with wire-coil inserts. Appl Therm Eng. 2013;61:461–8. https://doi.org/10.1016/J.APPLTHERMALENG.2013.07.048.

    Article  Google Scholar 

  8. Ananth J, Jaisankar S. Investigation on heat transfer and friction factor characteristics of thermosiphon solar water heating system with left-right twist regularly spaced with rod and spacer. Energy. 2014;65:357–63. https://doi.org/10.1016/J.ENERGY.2013.12.001.

    Article  Google Scholar 

  9. Jouybari HJ, Saedodin S, Zamzamian A, Nimvari ME, Wongwises S. Effects of porous material and nanoparticles on the thermal performance of a flat plate solar collector: an experimental study. Renew Energy. 2017;114:1407–18. https://doi.org/10.1016/J.RENENE.2017.07.008.

    Article  CAS  Google Scholar 

  10. Javaniyan Jouybari H, Saedodin S, Zamzamian A, Nimvari ME. Experimental investigation of thermal performance and entropy generation of a flat-plate solar collector filled with porous media. Appl Therm Eng. 2017;127:1506–17. https://doi.org/10.1016/j.applthermaleng.2017.08.170.

    Article  Google Scholar 

  11. Chen Z, Gu M, Peng D. Heat transfer performance analysis of a solar flat-plate collector with an integrated metal foam porous structure filled with paraffin. Appl Therm Eng. 2010;30:1967–73. https://doi.org/10.1016/J.APPLTHERMALENG.2010.04.031.

    Article  CAS  Google Scholar 

  12. Bazri S, Badruddin IA, Naghavi MS, Bahiraei M. A review of numerical studies on solar collectors integrated with latent heat storage systems employing fins or nanoparticles. Renew Energy. 2018;118:761–78. https://doi.org/10.1016/j.renene.2017.11.030.

    Article  CAS  Google Scholar 

  13. Nazari S, Safarzadeh H, Bahiraei M. Performance improvement of a single slope solar still by employing thermoelectric cooling channel and copper oxide nanofluid: an experimental study. J Clean Prod. 2019;208:1041–52. https://doi.org/10.1016/j.jclepro.2018.10.194.

    Article  CAS  Google Scholar 

  14. Olia H, Torabi M, Bahiraei M, Ahmadi MH, Goodarzi M, Safaei MR. Application of nanofluids in thermal performance enhancement of parabolic trough solar collector: state-of-the-art. Appl. Sci. 2019;9:463. https://doi.org/10.3390/app9030463.

    Article  CAS  Google Scholar 

  15. Kasaeian A, Eshghi AT, Sameti M. A review on the applications of nanofluids in solar energy systems. Renew Sustain Energy Rev. 2015;43:584–98. https://doi.org/10.1016/j.rser.2014.11.020.

    Article  CAS  Google Scholar 

  16. Tayebi R, Akbarzadeh S, Valipour MS. Numerical investigation of efficiency enhancement in a direct absorption parabolic trough collector occupied by a porous medium and saturated by a nanofluid. Environ Prog Sustain Energy. 2018. https://doi.org/10.1002/ep.13010.

    Article  Google Scholar 

  17. Said Z, Sabiha MA, Saidur R, Hepbasli A, Rahim NA, Mekhilef S, Ward TA. Performance enhancement of a flat plate solar collector using titanium dioxide nanofluid and Polyethylene Glycol dispersant. J Clean Prod. 2015;92:343–53. https://doi.org/10.1016/J.JCLEPRO.2015.01.007.

    Article  CAS  Google Scholar 

  18. Noghrehabadi A, Hajidavalloo E, Moravej M. An experimental investigation of a 3-D solar conical collector performance at different flow rates. J Heat Mass Transf Res. 2016;1:57–66.

    Google Scholar 

  19. Bellos E, Tzivanidis C, Tsimpoukis D. Enhancing the performance of parabolic trough collectors using nano fluids and turbulators. Renew Sustain Energy Rev. 2018;91:358–75. https://doi.org/10.1016/j.rser.2018.03.091.

    Article  CAS  Google Scholar 

  20. Frank G, Kauer E, Köstlin H, Schmitte FJ. Transparent heat-reflecting coatings for solar applications based on highly doped tin oxide and indium oxide. Sol Energy Mater. 1983;8:387–98. https://doi.org/10.1016/0165-1633(83)90004-7.

    Article  CAS  Google Scholar 

  21. Amrutkar SK, Solar Flat Plate Collector Analysis, IOSR J Eng. 2012;2:207–213.

    Article  Google Scholar 

  22. Föste S, Ehrmann N, Giovannetti F, Rockendorf G. Basics for the development of a high efficiency flat-plate collector with a selectively coated double glazing, 30th ISES Bienn. Sol World Congr. 2011;3:2469–74. https://doi.org/10.18086/swc.2011.19.14.

    Article  Google Scholar 

  23. Akbarzadeh S, Valipour MS. Heat transfer enhancement in parabolic trough collectors: A comprehensive review. Renew Sustain Energy Rev. 2018;92:198–218. https://doi.org/10.1016/J.RSER.2018.04.093.

    Article  CAS  Google Scholar 

  24. Bhide VG, Vaishya JS, Nagar VK, Sharma SK. Choice of selective coating for flat plate collectors. Sol Energy. 1982;29:463–5. https://doi.org/10.1016/0038-092X(82)90054-8.

    Article  Google Scholar 

  25. Dias D, Rebouta L, Costa P, Al-Rjoub A, Benelmeki M, Tavares CJ, Barradas NP, Alves E, Santilli P, Pischow K. Optical and structural analysis of solar selective absorbing coatings based on AlSiOx:W cermets. Sol Energy. 2017;150:335–44. https://doi.org/10.1016/j.solener.2017.04.055.

    Article  CAS  Google Scholar 

  26. Ning Y, Wang W, Wang L, Sun Y, Song P, Man H, Zhang Y, Dai B, Zhang J, Wang C, Zhang Y, Zhao S, Tomasella E, Bousquet A, Cellier J. Optical simulation and preparation of novel Mo/ZrSiN/ZrSiON/SiO2 solar selective absorbing coating. Sol Energy Mater Sol Cells. 2017;167:178–183. https://doi.org/10.1016/j.solmat.2017.04.017.

    Article  CAS  Google Scholar 

  27. Yin Y, Pan Y, Hang LX, McKenzie DR, Bilek MMM. Direct current reactive sputtering Cr–Cr2O3 cermet solar selective surfaces for solar hot water applications, Thin Solid Films. 2009:517:1601–6. https://doi.org/10.1016/J.TSF.2008.09.082.

    Article  CAS  Google Scholar 

  28. Voinea M, Bogatu C, Chitanu GC, Duta A. Copper cermets used as selective coatings for flat plate solar collectors. Rev Chim. 2008;59:1–6.

    Article  Google Scholar 

  29. Konttinen P, Lund PD. Microstructural optimization and extended durability studies of low-cost rough graphite–aluminium solar absorber surfaces. Renew Energy. 2004;29:823–39. https://doi.org/10.1016/J.RENENE.2003.11.008.

    Article  CAS  Google Scholar 

  30. Moncada MLT, Muñoz BC, Yoshida MM, Rodríguez RD. Comparative experimental study of new absorbent surface coatings for flat plate solar collectors, Energy Procedia. 2014;57:2131–8. https://doi.org/10.1016/j.egypro.2014.10.179.

    Article  CAS  Google Scholar 

  31. Shamshirgaran SR, Khalaji Assadi M, Badescu V, Al-Kayiem HH. Upper limits for the work extraction by nanofluid-filled selective flat-plate solar collectors. Energy. 2018;160:875–85. https://doi.org/10.1016/J.ENERGY.2018.06.154.

    Article  CAS  Google Scholar 

  32. Alami AH, Aokal K. Enhancement of spectral absorption of solar thermal collectors by bulk graphene addition via high-pressure graphite blasting. Energy Convers Manag. 2018;156:757–64. https://doi.org/10.1016/J.ENCONMAN.2017.11.040.

    Article  CAS  Google Scholar 

  33. Kasaeian A, Daviran S, Azarian RD. Optical and thermal investigation of selective coatings for solar absorber tube. Int J Renew Energy Res. 2016;6:15–20.

    Google Scholar 

  34. Kasaeian A, Daviran S, Azarian RD, Rashidi A. Performance evaluation and nanofluid using capability study of a solar parabolic trough collector. Energy Convers Manag. 2015;89:368–75. https://doi.org/10.1016/j.enconman.2014.09.056.

    Article  CAS  Google Scholar 

  35. Standards A, November C, Board A, Janu D. Methods of testing to determine the thermal performance of solar collectors, 1991;1986.

  36. Moffat RJ. Describing the uncertainties in experimental results. Exp Therm Fluid Sci. 1988;1:3–17. https://doi.org/10.1016/0894-1777(88)90043-X.

    Article  Google Scholar 

  37. Müller S, Giovannetti F, Reineke-Koch R, Kastner O, Hafner B. Simulation study on the efficiency of thermochromic absorber coatings for solar thermal flat-plate collectors. Solar Energy. 2019;188:865–74.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Sadegh Valipour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakhaei, S.A., Valipour, M.S. Investigation on the effect of different coated absorber plates on the thermal efficiency of the flat-plate solar collector. J Therm Anal Calorim 140, 1597–1610 (2020). https://doi.org/10.1007/s10973-019-09148-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09148-x

Keywords

Navigation