Log in

Flat-Plate Solar Collector Thermal Performance and Optimal Operation Mode by Exergy Analysis and Numerical Simulation

  • Research Article-Systems Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, the effect of a flat-plate solar collector components exergy destruction rates on the collector performance has been examined. A theoretical model based on energy and exergy balance for glass cover, absorber plate and working fluid resulted in nonlinear ordinary differentials non-autonomous system of equations that was solved numerically. Upon verification of the accuracy of the proposed model with experimental data, the effect of parameters such as solar radiation, mass flow rate, inlet fluid temperature and insulation thickness on the exergy destruction rates and exergy efficiency has been investigated. The model was used to optimize parameters, such as inlet fluid temperature, mass flow rate and number of collector tube. The results reveal that the highest exergy destruction rate occurs in the absorber plate, which is 79.23% of the total exergy destruction rate. Increasing the mass flow rate to 0.0087 kg/s leads to a decrease in the absorber plate exergy destruction rate to a minimum value of 575.74 W/m2 and to an increase in the exergy efficiency to a maximum value of 21.97%. When the inlet fluid temperature increases from 20 to 50 °C, the absorber plate exergy destruction rate reduces from 676.66 to 438.40 W/m2 resulting in a significant increase in the collector exergy efficiency from 6.80 to 37.86%. The optimum operating condition was found to be 37 °C for the inlet fluid temperature, 0.0087 kg/s for mass flow rate and fifteen for the number of tubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Abbreviations

\( C_{\text{p}} \) :

Specific heat capacity (\( {\text{kJ}}/{\text{kg}}/^\circ {\text{K}} \))

\( d \) :

Diameter (\( {\text{m}} \))

\( {\text{d}}T \) :

Temperature differential (\( ^\circ {\text{C}} \))

\( {\text{d}}t \) :

Time difference (\( {\text{s}} \))

\( {\text{Ex}} \) :

Exergy transfer rate (\( {\text{W}}/{\text{m}}^{2} \))

\( G \) :

Solar radiation (\( {\text{W}}/{\text{m}}^{2} \))

\( h \) :

Coefficient of heat transfer (\( {\text{W}}/{\text{m}}^{2} /^\circ {\text{C}} \))

\( k \) :

Thermal conductivity (\( {\text{W/m}}/^\circ {\text{C}} \))

\( l_{\text{a}} \) :

Distance between glass cover and absorber plate (\( {\text{m}} \))

\( m \) :

Mass (\( {\text{kg}} \))

\( n_{\text{t}} \) :

Number of tube

\( Q \) :

Heat transfer (\( {\text{W}}/{\text{m}}^{2} \))

\( S \) :

Surface area (\( {\text{m}}^{2} \))

\( T \) :

Temperature (\( ^\circ {\text{C}} \))

\( V \) :

Wind velocity (\( {\text{m}}/{\text{s}} \))

\( \alpha \) :

Absorptivity

\( \delta \) :

Thickness (\( {\text{m}} \))

\( \eta \) :

Efficiency

\( \varepsilon \) :

Emissivity

\( \rho \) :

Density (\( {\text{kg/m}}^{3} \))

\( \sigma \) :

Stefan–Boltzmann constant (\( {\text{W}}/{\text{m}}^{2} /^\circ {\text{K}}^{4} \))

\( \tau \) :

Transmitivity

\( {\text{a}} \) :

Ambient

\( {\text{c}} \) :

Convection

\( {\text{col}} \) :

Collector

\( {\text{en}} \) :

Energy

\( {\text{ex}} \) :

Exergy

\( {\text{f}} \) :

Working fluid

\( {\text{fi}} \) :

Inlet fluid

\( {\text{fo}} \) :

Outlet fluid

\( {\text{g}} \) :

Glass cover

\( {\text{g}}{-}{\text{a}} \) :

Glass to ambient

\( {\text{g}}{-}{\text{sky}} \) :

Glass to sky

\( {\text{i}} \) :

Insulator

\( {\text{p}} \) :

Absorber plate

\( {\text{p}}{-}{\text{f}} \) :

Absorber plate to fluid

\( {\text{p}}{-}{\text{g}} \) :

Absorber plate to glass

\( {\text{p}}{-}{\text{a}} \) :

Absorber plate to ambient

\( {\text{r}} \) :

Radiation

\( {\text{s}} \) :

Sun

References

  1. Cardinale, N.; Piccininni, F.; Stefanizzi, P.: Economic optimization of low-flow solar dometic hot water plants. Renew. Energy 28, 1899–1914 (2003)

    Article  Google Scholar 

  2. Keyanpour-Rad, M.; Haghgou, H.R.; Bahar, F.; Afshari, E.: Feasibility study of the application of solar heating systems in Iran. Renew. Energy 20, 333–345 (2000)

    Article  Google Scholar 

  3. Tchinda, R.: A review of the mathematical models for predicting solar air heaters systems. Renew. Sustain. Energy Rev. 13, 1734–1759 (2009)

    Article  Google Scholar 

  4. Kalogirou, S.A.: Thermal performance, economic and environment life cycle analysis of thermosiphon solar water heaters. Sol. Energy 83, 39–48 (2009)

    Article  Google Scholar 

  5. Farahat, S.; Sarhaddi, F.; Ajam, H.: Exergetic optimization of flat plate solar collectors. Renew. Energy 34, 1169–1174 (2009)

    Article  Google Scholar 

  6. Luminosu, I.; Fara, L.: Determination of the optimal mode of a flat solar collector by exergetic analysis and numerical simulation. Energy 30, 731–747 (2005)

    Article  Google Scholar 

  7. Allouhi, A.; Amine, M.B.; Buker, M.S.; Kousksou, T.; Jamil, A.: Forced-circulation solar water heating system using heat pipe-flat plate collectors: energy and exergy analysis. Energy 180, 429–443 (2019)

    Article  Google Scholar 

  8. Sakhaei, S.A.; Valipour, M.S.: Investigation on the effect of different coated absorber plates on the thermal efficiency of the flat-plate solar collector. J. Therm. Anal. Calorim. (2019). https://doi.org/10.1007/s10973-019-09148-x

    Article  Google Scholar 

  9. Tong, Y.; Leeb, H.; Kang, W.; Cho, H.: Energy and exergy comparison of a flat-plate solar collector using water, Al2O3 nanofluid, and CuO nanofluid. Appl. Therm. Eng. 159, 113959 (2019)

    Article  Google Scholar 

  10. Allouhi, A.; Amine, M.B.: Effect analysis on energetic, exergetic and financial performance of a flat plate collector with heat pipes. Energy Convers. Manag. 195, 274–289 (2019)

    Article  Google Scholar 

  11. Diez, F.J.; Navas-Gracia, L.M.; Martínez-Rodríguez, A.; Correa-Guimaraes, A.; Chico-Santamarta, L.: Modelling of a flat-plate solar collector using artificial neural networks for different working fluid (water) flow rates. Sol. Energy 188, 1320–1331 (2019)

    Article  Google Scholar 

  12. Aleksiejuk, J.; Chochowski, A.; Reshetiuk, V.: Analog model of dynamics of a flat-plate solar collector. Sol. Energy 160, 103–116 (2018)

    Article  Google Scholar 

  13. Zhou, L.; Wang, Y.; Huang, Q.: Parametric analysis on the performance of flat plate collector with transparent insulation material. Energy 174, 534–542 (2019)

    Article  Google Scholar 

  14. Verma, S.K.; Tiwari, A.K.; Tiwari, S.; Chauhan, D.S.: Performance analysis of hybrid nanofluids in flat plate solar collector as an advanced working fluid. Sol. Energy 167, 231–241 (2018)

    Article  Google Scholar 

  15. Edalatpour, M.; Solano, J.P.: Thermal-hydraulic characteristics and exergy performance in tube-on-sheet flat plate solar collectors: effects of nanofluids and mixed convection. Int. J. Therm. Sci. 118, 397–409 (2017)

    Article  Google Scholar 

  16. Gunjo, D.G.; Mahanta, P.; Robi, P.S.: Exergy and energy analysis of a novel type solar collector under steady state condition: experimental and CFD analysis. Renew. Energy 114, 655–669 (2017)

    Article  Google Scholar 

  17. Kalogirou, S.A.; Karellas, S.; Braimakis, K.; Stanciu, C.; Badescu, V.: Exergy analysis of solar thermal collectors and processes. Prog. Energy Combust. Sci. 56, 106–137 (2016)

    Article  Google Scholar 

  18. Jafarkazemi, F.; Ahmadifard, E.: Energetic and exergetic evaluation of flat plate solar collectors. Renew. Energy 56, 55–63 (2013)

    Article  Google Scholar 

  19. Jiandong, Z.; Hanzhong, T.; Susu, C.: Numerical simulation for structural parameters of flat-plate solar collector. Sol. Energy 117, 192–202 (2015)

    Article  Google Scholar 

  20. Malvi, C.S.; Gupta, A.; Gaur, M.K.; Crook, R.; Dixon-Hardy, D.W.: Experimental investigation of heat removal factor in solar flat plate collector for various flow configurations. Int. J. Green Energy 14, 442–448 (2017)

    Article  Google Scholar 

  21. Silva, F.A.S.; Salviano, L.O.: Heat transfer enhancement in a flat-plate solar water heater through longitudinal vortex generator. J. Sol. Energy Eng. 141, 041003 (2019)

    Article  Google Scholar 

  22. Kashyap, Y.; Singh, A.; Sekhar, R.Y.: Exergy analysis of a flat plate solar collector with grooved absorber tube configuration using aqueous ZnO–ethylene glycol. ASME J. Sol. Energy Eng. 140, 061011 (2018)

    Article  Google Scholar 

  23. Duffie, J.A.; Beckman, W.A.: Solar Engineering of Thermal Processes, 4th edn. Wiley, Hoboken (2013)

    Book  Google Scholar 

  24. Kumar, S.; Mullick, S.: Wind heat transfer coefficient in solar collectors in outdoor conditions. Sol. Energy 84, 956–963 (2010)

    Article  Google Scholar 

  25. Hollands, K.G.T.; Unny, T.E.; Raithby, G.D.; Konicek, L.: Free convection heat transfer across inclined air layers. J. Heat Transf. 98, 189–193 (1976)

    Article  Google Scholar 

  26. Swinbank, W.C.: Long-wave radiation from clear skies. Q. J. R. Meteorol. Soc. 90, 488–493 (1964)

    Article  Google Scholar 

  27. Koholé, Y.W.; Tchuen, G.: Comparative study of three thermosyphon solar water heaters made of flat-plate collectors with different absorber configurations. Int. J. Sustain. Energy 36, 430–449 (2017)

    Article  Google Scholar 

  28. Tchuen, G.; Koholé, Y.W.: A numerical investigation of three different thermosyphon solar water heating systems. Int. J. Ambiant Energy 39, 637–648 (2017)

    Article  Google Scholar 

  29. Koholé, Y.W.; Tchuen, G.: Optimization of flat-plate solar collectors used in thermosyphon solar water heater. Int. J. Renew. Energy Technol. Res. 6, 1–23 (2017)

    Google Scholar 

  30. Moran, M.J.; Shapiro, H.N.: Fundamentals of Engineering Thermodynamics. SI Version, 6th edn. Wiley India (P) Ltd, New Delhi (2010)

    Google Scholar 

  31. Dincer, I.; Rosen, M.A.: Exergy: Energy, Environment and Sustainable Development, 1st edn. Elsevier Ltd, London (2007)

    Google Scholar 

  32. Bejan, A.: Advanced Engineering Thermodynamics. Wiley, Hoboken (2006)

    Google Scholar 

  33. Petela, R.: Engineering Thermodynamics of Thermal Radiation: For Solar Power Utilization. McGraw Hill, New York (2010)

    MATH  Google Scholar 

  34. Petela, R.: Exergy of heat radiation. Trans. ASME J. Heat Transf. 2, 187–192 (1964)

    Article  Google Scholar 

  35. Petela, R.: Exergy analysis of the solar cylindrical-parabolic cooker. Sol. Energy 79, 221–233 (2005)

    Article  Google Scholar 

  36. Karakilcik, M.; Dincer, I.: Exergetic performance analysis of a solar pond. Int. J. Therm. Sci. 47, 93–102 (2008)

    Article  Google Scholar 

  37. Dehghan, A.A.; Movahedi, A.; Mazidi, M.: Experimental investigation of energy and exergy performance of square and circular solar ponds. Sol. Energy 97, 273–284 (2013)

    Article  Google Scholar 

  38. Singh, N.; Kaushik, S.C.; Misra, R.D.: Exergetic analysis of a solar thermal power system. Renew. Energy 19, 135–143 (2000)

    Article  Google Scholar 

  39. Koholé, Y.W.; Tchuen, G.: Experimental and numerical investigation of a thermosyphon solar water heater. Int. J. Ambient Energy 41, 384–394 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yemeli Wenceslas Koholé.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koholé, Y.W., Fohagui, F.C.V. & Tchuen, G. Flat-Plate Solar Collector Thermal Performance and Optimal Operation Mode by Exergy Analysis and Numerical Simulation. Arab J Sci Eng 46, 1877–1897 (2021). https://doi.org/10.1007/s13369-020-05150-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05150-w

Keywords

Navigation