Flat Plate Solar Thermal Collectors—A Review

  • Conference paper
  • First Online:
Emerging Technologies for Smart Cities

Abstract

Solar thermal flat plate collectors (STFPC) are the mainstay in modern household solar thermal applications and in industrial sectors requiring low-temperature applications. They are easy to design and manufacture and are available in many forms. STFPCs are used in water heating, crops drying, timber seasoning, space heating and solar absorption/adsorption refrigeration systems. It is one of the most widely used and studied solar collectors. In this paper, an attempt has been made to review research works on improving the thermal performance of the solar flat plate collector. Detailed discussions have been presented on the various losses of the STFPC and methodologies suggested by the researchers to reduce the losses as well as improving the thermal performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Duffie JA, Beckman WA (2013) Solar engineering of thermal processes, 4th edn. Wiley, USA, pp 5–6

    Book  Google Scholar 

  2. Amri A, Jiang ZT, Pryor T, Yin CY, Djordjevic S (2014) Developments in the synthesis of flat plate solar selective absorber materials via sol-gel methods: a review. Renew Sustain Energy Rev 36:316–328

    Google Scholar 

  3. Ibrahim A, Othman MY, Ruslan MH, Mat S, Sopian K (2011) Recent advances in flat plate photovoltaic/thermal (PV/T) solar collectors. Renew Sustain Energy Rev 15(1):352–365

    Article  Google Scholar 

  4. Gaur MK, Tiwari GN (2009) Optimization of number of collectors for integrated PV/T hybrid active solar still. Appl Energy 87(5):1763–1772

    Google Scholar 

  5. Ramani BM, Gupta A, Kumar R (2010) Performance of a double pass solar air collector. Sol Energy 84(11):1929–1937

    Article  Google Scholar 

  6. Michaelides IM, Eleftheriou PC (2011) An experimental investigation of the performance boundaries of a solar water heating system. Exp Therm Fluid Sci 35(6):1002–1009

    Google Scholar 

  7. Hedayatizadeh M, Sarhaddi F, Safavinejad A, Ranjbar F, Chaji H (2016) Exergy loss based efficiency optimization of a double pass/glazed v-corrugated plate solar air collector. Energ 94:799–810

    Google Scholar 

  8. Skoplaki E, Palyvos JA (2009) On the temperature dependence of photovoltaic module electrical performance: a Review of Efficiency/Power correlations. Sol Energy 83(5):614–624

    Google Scholar 

  9. Huang BJ, Lin TH, Hung WC, Sun FS (2001) Performance evaluation of solar photovoltaic/thermal systems. Sol Energy 70(5):443–448

    Article  Google Scholar 

  10. Han J, Ji J, Chow TT, Yi H, Lu J, He W, Sun W (2006) Effect of fluid flow and packing factor on energy performance of a wall-mounted hybrid photovoltaic/water-heating collector system. Energy Build 38(12):1380–1387

    Article  Google Scholar 

  11. Chauhan D, Shishodia YS, Agarwal S (2015) Performance of hybrid air collector under different conditions. Eur J Adv Eng Technol 2(3):69–75

    Google Scholar 

  12. Omrany H, Marsono AK (2016) Optimization of building energy performance through passive design strategies. Br J Appl Sci Technol 13(6):1–16

    Google Scholar 

  13. Pokorny N, Matuska T (2016) Performance analysis of glazed liquid photovoltaic thermal collector with use of detail model. Sol Energy 83(12):2157–2164

    Google Scholar 

  14. Aste N, Leonforte F, Pero CD (2012) Optimization of solar thermal fraction in PVT systems. Energy Proc 30:8–18

    Article  Google Scholar 

  15. Balaji S, Reddy KS, Sundararajan T (2016) Optical modelling and performance analysis of a solar LFR receiver system with parabolic and involute secondary reflectors. Appl Energy 179:1138–1151

    Article  Google Scholar 

  16. Kraemer D, Poudel B, Feng HP, Caylor JC, Yu B, Yan X, Ma Y, Wang X, Wang D, Muto A, McEnaney K, Chiesa M, Ren Z, Chen G (2011) High performance flat panel solar thermoelectric generators with high thermal concentration. Nat Mater 10(7):532–538

    Article  Google Scholar 

  17. Reddy KS, Vikram TS, Mallick TK (2018) Experimental performance investigations of an elliptical hyperbolic non-imaging solar concentrator with trapezoidal surface receiver for process heat applications. J Clean Prod 192:735–750

    Google Scholar 

  18. Tian Y, Zhao CY (2013) A review of solar collectors and thermal energy storage in solar thermal applications. Appl Energy 104:538–553

    Article  Google Scholar 

  19. Ayompe LM, Duffy A (2013) Analysis of the thermal performance of a solar water heating system with flat plate collectors in a temperate climate. Appl Therm Eng 58(1–2):447–454

    Article  Google Scholar 

  20. Mani M, Pillai R (2010) Impact of dust on solar photovoltaic(PV) performance: research status, challenges and recommendations. Renew Sustain Energy Rev 14(9):3124–3131

    Google Scholar 

  21. Yang M, Wang P, Yang X, Shan M (2012) Experimental analysis on thermal performance of a solar air collector with a single pass. Build Environ 56:361–369

    Article  Google Scholar 

  22. Juanico L, Dilalla N (2014) Optimization of the hose-based low cost solar collector. Int J Renew Energy Biofuels 2014

    Google Scholar 

  23. Agbo SN, Okoroigwe EC (2007) Analysis of thermal loses in flat plate collector of a Thermosyphon Solar water heater. Res J Phys 1(1):35–41

    Google Scholar 

  24. Reddy PM, Venkataramaiah P, Sairam P (2012) Optimization of process parameters of a solar parabolic trough in winter using Grey-Taguchi approach. Int J Eng Res Appl (IJERA) 2:816–821

    Google Scholar 

  25. Leon MA, Kumar S (2007) Mathematical modeling and thermal performance analysis of unglazed transpired solar collectors. Sol Energy 81(1):62–75

    Article  Google Scholar 

  26. Prajapati V, Soni U, Devi M (2016) A review to optimize the parameter of solar air heater. Int J Adv Eng Res Dev 3(5):71–82

    Google Scholar 

  27. Pacheco R, Ordonez J, Martinez G (2012) Energy efficient design of building: a review. Renew Sustain Energy Rev 16(6):3559–3573

    Article  Google Scholar 

  28. Abubakar GB, Egbo G (2014) Performance evaluation of flat plate solar collector (Model Te39) in Bauchi. Am J Eng Res (AJER) 3(10):34–40

    Google Scholar 

  29. Zima W, Dziewa P (2010) Modelling of liquid flat plate solar collector operation in transient states. J Power Energ 225(1):53–62

    Google Scholar 

  30. Raghuraman P, Hendrie SD (2009) Analytical predictions of liquid, air photovoltaic/thermal flat plate collector performance. J Sol Energy Eng 103(4):291–298

    Google Scholar 

  31. Pena JLDL, Aguilar R (2014) Polymer solar collectors: a better alternative to heat water in Mexican homes. Energy Proc 57:2205–2210

    Google Scholar 

  32. Rehim ZSA (1998) A new design of solar water heater. Proc Indian Acad Sci (Chem Sci) 110(3):373–384

    Google Scholar 

  33. Sukhatme SP (1997) Solar energy: principles of thermal collection and storage, 2nd edn. Tata McGraw Hill Publishing Company Ltd., India

    Google Scholar 

  34. Amrutkar SK, Ghodke S, Patil KN (2012) Solar flat plate collector analysis. IOSR J Eng (IOSRJEN) 2(2):207–213

    Google Scholar 

  35. Chen Z, Furbo S, Perers B, Fan J, Andersen E (2012) Efficiencies of flat plate solar collectors at different flow rates. Energy Proc 30:65–72

    Article  Google Scholar 

  36. Farahat S, Sarahaddi F, Ajam H (2008) Exergetic optimization of flat plate solar collectors. Renew Energy 34(4):1169–1174

    Google Scholar 

  37. Matuska T, Zmrhal V, Metzger J (2009) Detailed modelling of solar flat-plate collectors with design tool kolektor 2.2. In: Eleventh International IBPSA conference, Glasgow, Scotland, 27–30 July 2009

    Google Scholar 

  38. Rai GD (2005) Non- conventional energy sources, 4th edn. Khanna Publishers, India, pp 91–93

    Google Scholar 

  39. Ghoneim AA (2005) Performance optimization of solar collector equipped with different arrangements of square-celled honeycomb. Int J Therm Sci 44(1):95–105

    Article  Google Scholar 

  40. Boudaden J, Oelhafen P, Schuler A, Roecker C, Scartezzini JL (2005) Multilayered Al2O3/SiO2 and TiO2/SiO2 coatings for glazed coloured solar thermal collectors. Sol Energy Mater Sol Cells 89(2–3):209–218

    Google Scholar 

  41. Dudita M, Manceriu LM, Anastasescu M, Nicolescu M, Gartner M, Duta A (2013) Coloured TiO2 based glazing obtained by spray pyrolysis for solar thermal applications. Ceram Int 40(3):3903–3911

    Article  Google Scholar 

  42. Rahman MM, Öztop HF, Ahsan A, Kalam MA, Varol Y (2012) Double-diffusive natural convection in a triangular solar collector. Int Commun Heat Mass Transf 39(2):264–269

    Google Scholar 

  43. La¨mmle M, Kroyer T, Fortuin S, Wiese M, Hermann M (2016) Development and modelling of highly-efficient PVT collectors with low-emissivity coatings. Sol Energy 130:161–173

    Google Scholar 

  44. Chow TT (2010) A review on PV/T hybrid technology. Appl Energy 87(2):365–379

    Article  Google Scholar 

  45. Alfegi EMA, Sopian K, Othman MY, Yatim B (2009) The effect of flow rates on the performance of finned single pass, double duct photovoltaic thermal solar air heaters. Eur J Sci Res 25(2):339–344

    Google Scholar 

  46. Cardinale N, Piccininni F, Stefanizzi P (2013) Economic optimization of low-flow solar domestic hot water plants. Renew Energy 28(12):1899–1914

    Google Scholar 

  47. Taylor RA, Otanicar TP, Adrian R, Prasher R, Phelan PE (2011) Nano fluid optical property characterization towards efficient direct absorption solar collector. Nanoscale Res Lett 6(1):225

    Article  Google Scholar 

  48. Khanjari Y, Kasaeian AB, Pourfayaz F (2017) Evaluating the environmental parameters affecting the performance of photovoltaic thermal system using nanofluid. Appl Therm Eng 115:178–187

    Article  Google Scholar 

  49. Nasrin R, Alim MA, Chamkha AJ (2012) Combined convection flow in triangular wavy chamber filled with water-CuO nanofluid: effect of viscosity models. Int Commun Heat Mass Transf 39(8):1226–1236

    Article  Google Scholar 

  50. Nasrin R, Alim MA (2014) Modeling of a solar water collector with water-based nanofluid using Nano particle. Heat Transf-Asian Res 43(3):270–287

    Google Scholar 

  51. Said Z, Saidur R, Rahim NA, Alim MA (2014) Analysis of exergy efficiency and pum** power for a conventional flat plate solar collector using SWCNTs based nanofluid. Energy Build 78:1–9

    Google Scholar 

  52. Bhowmik H, Amin R (2017) Efficiency improvement of flat plate solar collector using reflector. Energy Rep 3:119–123

    Article  Google Scholar 

  53. Said Z, Sabiha MA, Saidur R, Hepbasli A, Rahim NA, Mekhilef S, Ward TA (2015) Performance enhancement of a flat plate solar collector using titanium dioxide nanofluid and polyethylene glycol dispersant. J Clean Prod 92(2015):343–353

    Article  Google Scholar 

  54. Shojaeizadeh E, Veysi F, Kamandi A (2015) Exergy efficiency investigation and optimization of an Al2O3-water nanofluid based flat-plate solar collector. Energy Build 101(2015):12–23

    Article  Google Scholar 

  55. Abad MTJ, Zamzamian A, Imani E, Mansouri M. Experimental study of the performance of a flat-plate collector using Cu-Water nanofluid. J Thermophys Heat Transf https://doi.org/10.2514/1.t4074

  56. Jafarkazemi F, Ahmadifard E (2013) Energetic and Exergetic evaluation of flat plate solar collectors. Renew Energy 56(2013):55–63

    Article  Google Scholar 

  57. El-Sawi AM, Wifi AS, Younan MY, Elsayed EA, Basily BB (2010) Application of folded sheet metal in flat bed solar air collectors. Appl Therm Eng 30:864–871

    Google Scholar 

  58. Charalambous PG, Kalogirou SA, Maidment GG, Yiakoumetti K (2007) PV/T collectors-a review. Appl Therm Eng 27(2–3):275–286

    Google Scholar 

  59. Tiwari A, Sodha MS (2006) Performance evaluation of solar PV/T system: an experimental validation. Sol Energy 80:751–759

    Google Scholar 

  60. Singh PL, Sarviya RM, Bhagoria JL (2010) Heat loss study of trapezoidal cavity absorbers for linear solar concentrating collector. Energy Convers Manag 51(2010):329–337

    Article  Google Scholar 

  61. Struckmann F (2008) Analysis of a Flat-plate Solar Collector. Heat Mass Transp.1–4. https://scholar.google.co.in/scholar?hl=en&as_sdt=0%2C5&q=F.+Struckmann%2C+Analysis+of+a+Flat-plate+Solar+Collector&btnG. Accessed 15 Nov 2019

  62. Singh B, Othman MY (2009) A review on photovoltaic thermal collectors. J Renew Sustain Energ 1(6). https://doi.org/10.1063/1.3266963

    Article  Google Scholar 

  63. Otanicar TP, Phelan PE, Tyagi H, Taylor RA (2011) Spatially varying coefficient for direct absorption solar thermal collector optimization. J Sol Energ Eng 133(2). https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1087.9648&rep=rep1&type=pdf. Accessed 15 Nov 2019

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge with a deep sense of gratitude the TEQIP-III cell, Jorhat Engineering College for providing us with necessary arrangements and help during our research work, which enable us to carry out our research and publish our results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhrupad Sarma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sarma, D., Barua, P.B., Rabha, D.K., Verma, N., Purkayastha, S., Das, S. (2021). Flat Plate Solar Thermal Collectors—A Review. In: Bora, P.K., Nandi, S., Laskar, S. (eds) Emerging Technologies for Smart Cities. Lecture Notes in Electrical Engineering, vol 765. Springer, Singapore. https://doi.org/10.1007/978-981-16-1550-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1550-4_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1549-8

  • Online ISBN: 978-981-16-1550-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation