Log in

Energetic potential of pyrolyzed biomass from different sources: a comparative study

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The use of biomass has been a recent trend as a potential feedstock for char generation with improved energetic value. In this work, agricultural residues such as sugarcane bagasse (SCB) and rice husk (RH) were submitted to slow pyrolysis and their calorific value potential was evaluated in comparison with industrial woodchip biochar (WC) (Pyreg GmbH). The samples were characterized by thermogravimetry (TG), differential thermal analysis (DTA), elemental analysis (CNHS) and Fourier-transform infrared spectroscopy. The chars/biochar had a high energetic profile, as indicated by the prominent exothermic peaks in DTA curves, along with the major mass losses, as demonstrated in the TG curves. The combination of fixed carbon (FC) and ash content (A) proved to be essential to produce a char with enhanced higher heating value (HHV), as observed for SCB (FC = 54.6%; A = 6.2%) and RH (FC = 51.0%; A = 38.4%). SCB and RH chars presented an improved stability reflected by a C/N molar ratio higher than 90%. The low nitrogen content (SCB = 0.8%; RH = 0.6%) and surface area (SCB = 6.0 m2 g−1; RH = 11.2 m2 g−1) of the produced chars suggest that they are not indicated for agricultural applications, unless chemical activation is applied. Furthermore, the post-treatment applied for WC (biological activation) is possibly the cause for the improved physicochemical properties, particularly in terms of potential soil conditioning, at the expense of estimated calorific value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Colantoni A, Evic N, Lord R, Retschitzegger S, Proto AR, Gallucci F, Monarca D. Characterization of biochars produced from pyrolysis of pelletized agricultural residues. Renew Sust Energy Rev. 2016;4:187–94. https://doi.org/10.1016/j.rser.2016.06.003.

    Article  CAS  Google Scholar 

  2. He X, Liu Z, Niu W, Yang L, Zhou T, Qin D, Niu Z, Yuan Q. Effects of pyrolysis temperature on the physicochemical properties of gas and biochar obtained from pyrolysis of crop residues. Energy. 2018;143:746–56. https://doi.org/10.1016/j.energy.2017.11.062.

    Article  CAS  Google Scholar 

  3. Dunnigan L, Ashman PJ, Zhang X, Kwong CW. Production of biochar from rice husk: particulate emissions from the combustion of raw pyrolysis volatiles. J Clean Prod. 2018;172:1639–45. https://doi.org/10.1016/j.jclepro.2016.11.107.

    Article  CAS  Google Scholar 

  4. Food and Agriculture Organization of the United Nations (FAO). Rice market monitor. 2017; 3.

  5. Mohd Esa N, Ling TB. By-products of rice processing: an overview of health benefits and applications. Rice Re Open Access. 2016;4(1):1–11. https://doi.org/10.4172/jrr.1000107.

    Article  Google Scholar 

  6. Zhang H, Ding X, Chen X, Ma Y, Wang Z, Zhao X. A new method of utilizing rice husk: consecutively preparing d-xylose, organosolv lignin, ethanol and amorphous superfine silica. J Hazard Mater. 2015;291:65–73. https://doi.org/10.1016/j.jhazmat.2015.03.003.

    Article  CAS  PubMed  Google Scholar 

  7. Dunnigan L, Morton BJ, Ashman PJ, Zhang X, Wai C. Emission characteristics of a pyrolysis-combustion system for the co-production of biochar and bioenergy from agricultural wastes. Waste Manag. 2018;77:59–66. https://doi.org/10.1016/j.wasman.2018.05.004.

    Article  CAS  PubMed  Google Scholar 

  8. Companhia Nacional de Abastecimento (CONAB). Acompanhamento da safra brasileira: cana-de-açúcar; 2018/2019, August 2018. vol. 5, 76p.

  9. David GF, Justo OR, Perez VH, Garcia-Perez M. Thermochemical conversion of sugarcane bagasse by fast pyrolysis: high yield of levoglucosan production. J Anal Appl Pyrolysis. 2018;33:246–53. https://doi.org/10.1016/j.jaap.2018.03.004.

    Article  CAS  Google Scholar 

  10. Haykiri-Acma H, Yaman S, Kucukbayrak S. Comparison of the thermal reactivities of isolated lignin and holocellulose during pyrolysis. Fuel Sci Technol. 2010;91(7):759–64. https://doi.org/10.1016/j.fuproc.2010.02.009.

    Article  CAS  Google Scholar 

  11. Günther B, Gebauer K, Barkowski R, Rosenthal M, Bues CT. Calorific value of selected wood species and wood products. Eur J Wood Wood Prod. 2012;70(5):755–7. https://doi.org/10.1007/s00107-012-0613-z.

    Article  Google Scholar 

  12. Todaro L, Rita A, Cetera P, D’Auria M. Thermal treatment modifies the calorific value and ash content in some wood species. Fuel. 2015;140:1–3. https://doi.org/10.1016/j.fuel.2014.09.060.

    Article  CAS  Google Scholar 

  13. Prost K, Borchard N, Siemens J, Kautz T, Séquaris JM, Möller A, Amelung W. Biochar affected by composting with farmyard manure. J Environ Qual. 2013;42:164–72.

    Article  CAS  Google Scholar 

  14. Schulz H, Dunst G, Glaser B. Positive effects of composted biochar on plant growth and soil fertility. Agron Sustain Dev. 2013;33:817–27.

    Article  CAS  Google Scholar 

  15. Rajapaksha AU, Vithanage M, Ahmad M, Seo DC, Cho JS, Lee SE, Lee SS, Ok YS. Enhanced sulfamethazine removal by steam-activated invasive plant-derived biochar. J Hazard Mater. 2015;290:43–50. https://doi.org/10.1016/j.jhazmat.2015.02.046.

    Article  CAS  PubMed  Google Scholar 

  16. Pyreg. Biomass characteristics of a Pyreg System. http://www.pyreg.de/wp-content/uploads/04_biomass_characteristics_PYREG_system.pdf. Accessed 3 Oct 2018.

  17. Parikh J, Channiwala SA, Ghosal GK. A correlation for calculating elemental composition from proximate analysis of biomass materials. Fuel. 2007;86(12–13):1710–9. https://doi.org/10.1016/j.fuel.2006.12.029.

    Article  CAS  Google Scholar 

  18. García R, Pizarro C, Lavín AG, Bueno JL. Biomass proximate analysis using thermogravimetry. Bioresour Technol. 2013;139:1–4. https://doi.org/10.1016/j.biortech.2013.03.197.

    Article  CAS  PubMed  Google Scholar 

  19. Malucelli LC, Silvestre GF, Carneiro J, Vasconcelos EC, Guiotoku M, Maia CMBF, Carvalho Filho MAS. Biochar higher heating value estimative using thermogravimetric analysis. J Therm Anal Calorim 2019;1–6.

  20. Parikh J, Channiwala SA, Ghosal GK. A correlation for calculating HHV from proximate analysis of solid fuels. Fuel. 2005;84(5):487–94. https://doi.org/10.1016/j.fuel.2004.10.010.

    Article  CAS  Google Scholar 

  21. Sun Y, Gao B, Yao Y, Fang J, Zhang M, Zhou Y, Chen H, Yang L. Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties. Chem Eng J. 2014;240:574–8. https://doi.org/10.1016/j.cej.2013.10.081.

    Article  CAS  Google Scholar 

  22. Johar N, Ahmad I, Dufresne A. Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind Crops Prod. 2012;37(1):93–9. https://doi.org/10.1016/j.indcrop.2011.12.016.

    Article  CAS  Google Scholar 

  23. Cruz G, Crnkovic PM. Investigation into the kinetic behavior of biomass combustion under N2/O2 atmosphere. J Therm AnalCalorim. 2016;123:1003–11.

    Article  CAS  Google Scholar 

  24. Almeida S, Crespi MS, Nozela WC, Dias DS, Silva FR, Torquato LDM, Ribeiro CA, Marchi MRR. Food waste: energy source. J Therm Anal Calorim. 2018;134:1367.

    Article  CAS  Google Scholar 

  25. Yuan W, Boyette MD, Wang D, Kumar A. Characterization of biochar from rice hulls and wood chips produced in a top-lit updraft biomass gasifier. Trans ASABE. 2016;59(3):749–56.

    Article  Google Scholar 

  26. Kizito S, Luo H, Lu J, Bah H, Dong R, Wu S. Role of nutrient-enriched biochar as a soil amendment during maize growth: exploring practical alternatives to recycle agricultural residuals and to reduce chemical fertilizer demand. Sustainability. 2019;11(11):3211.

    Article  CAS  Google Scholar 

  27. Zhao B, O’Connor D, Zhang J, Peng T, Shen Z, Tsang DCW, Hou D. Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar. J Clean Prod. 2018;174:977–87. https://doi.org/10.1016/j.jclepro.2017.11.013.

    Article  CAS  Google Scholar 

  28. Yu J, Sun L, Berrueco C, Fidalgo B, Paterson N, Millan M. Influence of temperature and particle size on structural characteristics of chars from Beechwood pyrolysis. J Anal Appl Pyrolysis. 2018;130:127–34. https://doi.org/10.1016/j.jaap.2018.01.018.

    Article  CAS  Google Scholar 

  29. Lee Y, Park J, Ryu C, Gang KS, Yang W, Park YK, Jung J, Hyun S. Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500°C. Bioresour Technol. 2013;148:196–201. https://doi.org/10.1016/j.biortech.2013.08.135.

    Article  CAS  PubMed  Google Scholar 

  30. Spokas KA. Review of the stability of biochar in soils: predictability of O: C molar ratios. Carbon Manag. 2010;1(2):289–303. https://doi.org/10.4155/cmt.10.32.

    Article  CAS  Google Scholar 

  31. Grutzmacher P, Puga AP, Bibar MPS, Coscione AR, Packer AP, de Andrade CA. Carbon stability and mitigation of fertilizer induced N2O emissions in soil amended with biochar. Sci Total Environ. 2018;625:1456–66. https://doi.org/10.1016/j.scitotenv.2017.12.196.

    Article  CAS  Google Scholar 

  32. Bakshi S, Banik C, Laird DA. Quantification and characterization of chemically-and thermally-labile and recalcitrant biochar fractions. Chemosphere. 2018;194:247–55. https://doi.org/10.1016/j.chemosphere.2017.11.151.

    Article  CAS  PubMed  Google Scholar 

  33. Oldfield TL, Sikirica N, Mondini C, López G, Kuikman PJ, Holden NM. Biochar, compost and biochar-compost blend as options to recover nutrients and sequester carbon. J Environ Manag. 2018;218:465–76.

    Article  CAS  Google Scholar 

  34. Yang X, Kwon EE, Dou X, Zhang M, Kim KH, Tsang DCW, Ok YS. Fabrication of spherical biochar by a two-step thermal process from waste potato peel. Sci Total Environ. 2018;626:478–85. https://doi.org/10.1016/j.scitotenv.2018.01.052.

    Article  CAS  PubMed  Google Scholar 

  35. Narzari R, Bordoloi N, Sarma B, Gogoi L, Gogoi N, Borkotoki B, Kataki R. Fabrication of biochars obtained from valorization of biowaste and evaluation of its physicochemical properties. Bioresour Technol. 2017;242:324–8. https://doi.org/10.1016/j.biortech.2017.04.050.

    Article  CAS  PubMed  Google Scholar 

  36. Basso AS, Miguez FE, Laird DA, Horton R, Westgate M. Assessing potential of biochar for increasing water-holding capacity of sandy soils. Gcb Bioenergy. 2013;5:132–43.

    Article  CAS  Google Scholar 

  37. Chen B, Johnson EJ, Chefetz B, Zhu L, **ng B. Sorption of polar and nonpolar aromatic organic contaminants by plant cuticular materials: role of polarity and accessibility. Environ Sci Technol. 2005;39(16):6138–46. https://doi.org/10.1021/es050622q.

    Article  CAS  PubMed  Google Scholar 

  38. Tag AT, Duman G, Ucar S, Yanik J. Effects of feedstock type and pyrolysis temperature on potential applications of biochar. J Anal Appl Pyrolysis. 2016;120:200–6. https://doi.org/10.1016/j.jaap.2016.05.006.

    Article  CAS  Google Scholar 

  39. Peng H, Gao P, Chu G, Pan B, Peng J, **ng B. Enhanced adsorption of Cu(II) and Cd(II) by phosphoric acid-modified biochars. Environ Pollut. 2017;229:846–53. https://doi.org/10.1016/j.envpol.2017.07.004.

    Article  CAS  PubMed  Google Scholar 

  40. Song W, Guo M. Quality variations of poultry litter biochar generated at different pyrolysis temperatures. J Anal Appl Pyrolysis. 2012;94:138–45. https://doi.org/10.1016/j.jaap.2011.11.018.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (National Council of Technological and Scientific Development) and Embrapa Florestas for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Carneiro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malucelli, L.C., Carneiro, J., Vasconcelos, E.C. et al. Energetic potential of pyrolyzed biomass from different sources: a comparative study. J Therm Anal Calorim 141, 1149–1155 (2020). https://doi.org/10.1007/s10973-019-09061-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09061-3

Keywords

Navigation