Log in

Food waste: energy source

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Research indicates that the waste of food in residences of Brazilian families is due to the population’s habit of enjoying preparing and serving food in large quantities, as well as the lack of custom in the use of stalks and leaves of vegetables and throwing in the trash. Samples used in this research (A1) consisted of a mixture of diverse natural foods crushed in a blender. A2 is formed by the same constituents of food and the same mass; in this case, the food was cut into 0.5 cm in length. After oven drying at 70 °C, they were triturated in the crusher and sieved. The objective of this research was to verify the thermal behavior of two samples of food residues, with the identification of the gas released during the FTIR heating and the determination of the kinetic parameters by the Wanjun–Donghua modified method, as well as the determination of the higher heating value. The thermal behavior of the samples was different; A2 presented thermal degradation with well-defined peaks, which did not occur with A1 shown by DTG. The mean activation energies were, respectively, 130.0 kJ and 75.4 kJ, and the heats involved in the burning of A1 and A2 were 20.46 and 14.96 kJ g−1, and differences in the behavior of A1 A2 were due to the way of the sample preparation. The HHV compared with other matrices indicates good energetic properties. The hygroscopicity test indicates that A1 and A2 were equal around 7%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Almeida S, Santos DV, Crespi MS, Bernabé GA. Characterization and thermal study of organic extracts of urban solid waste. J Therm Anal Calorim. 2015;121:209–15.

    Article  CAS  Google Scholar 

  2. Política Nacional de Resíduos Sólidos, Lei 12.305. Diário Oficial da República Federativa do Brasil, Brasília, DF (2010). www.planalto.gov.br/ccivil_03/_ato2007-2010/…/lei/l12305.htm. Accessed 11 March 2014.

  3. Diagnóstico da gestão dos resíduos sólidos domiciliares na Subprefeitura Lapa (2014). http://www.5elementos.org.br/consumo/wpcontent/themes/vantage/images/arquivos/Diagnostico_da_Gestao_dos_Residuos_Solidos_Domiciliares_na_Subprefeitura_Lapa. Accessed 5 June 2016.

  4. FAO-2014 Agriculture and Food (2015). http://agenciabrasil.ebc.com.br/economia/noticia/2015-04/domingo-editada-fao-quer-reduzir-perdas-de-alimentos-no-brasil. Accessed 5 June 2016.

  5. Karapidakis ES, Tsave AA, Soupios PM, Katsigiannis YA. Energy efficiency and environmental impact of biogas utilization in landfills. Int J Environ Sci Technol. 2010;7(3):599–608.

    Article  CAS  Google Scholar 

  6. Dias JMCS, Santos DT, Braga M, Onoyama MM, Miranda CHB, Barbosa PDF, Rocha JD. Produção de briquetes e péletes a partir de resíduos agrícolas, agroindustriais e florestais. Brasília: Embrapa Agroenergia; 2012. p. 132–8.

    Google Scholar 

  7. Garcia DP, Caraschi JC, Ventorim G. Caracterização energética de pellets de madeira. Revista da Madeira. 2013;135:14–8.

    Google Scholar 

  8. Deng J, Wang GJ, Kuang JH, Zhang YL, Luo YH. Pretreatment of agriculture residues for co-gasification via torrefaction. J Anal Appl Pyrol. 2009;86:331–7.

    Article  CAS  Google Scholar 

  9. Van der Stelt MJ, Gerhausser H, Kie JH, Ptasinski KJ. Biomass upgrading by torrefaction for the production of biofuels: a review. Biomass Bioenergy. 2011;35:3748–62.

    Google Scholar 

  10. Wanjun T, Donghua C. An integral method to determine variation in activation energy with extent of conversion. Thermochim Acta. 2005;433(1–2):72–6.

    Article  Google Scholar 

  11. Torquato LD, Crnkovic PM, Ribeiro CA, Crespi MS. New approach for proximate analysis by thermogravimetry using CO2 atmosphere: validation and application to different biomasses. J Therm Anal Calorim. 2017;128:1–14.

    Article  CAS  Google Scholar 

  12. Brasil. Agência Nacional de Vigilância Sanitária. ANVISA. Resolução RDC nº 899 de 29 de Maio de 2003. Guia para validação de métodos analíticos e bionalíticos. Diário Oficial da União, Brasília, DOU 02/06/2003.

  13. Mustafa V, Ozgur E. Thermal analysis and kinetic of biomass samples. Fuel Process Technol. 2013;106:739–43.

    Article  Google Scholar 

  14. Cruz G, Crnkovic PM. Investigation into the kinetic behavior of biomass combustion under N2/O2 atmosphere. J Therm Anal Calorim. 2016;123:1003–11.

    Article  CAS  Google Scholar 

  15. Basu P. Biomass gasification and pyrolysis. Practical design and theory. Burlington: Academic Press; 2010. p. 39.

    Google Scholar 

  16. Jones JM, Saddawi A, Dooley B, Mitchell EJS, Werner J, Wadron DJ, Weartherstone S, Willians A. Low-temperature ignition of biomass. Fuel Process Technol. 2015;134:372–7.

    Article  CAS  Google Scholar 

  17. Smidt E, Meissl K. The applicability of Fourier transform infrared (FT-IR) spectroscopy in waste management. Waste Manag Res. 2007;27:268–76.

    Article  CAS  Google Scholar 

  18. Silverstein RM, Bassler GC, Morril TC. Identificação Espectrometrica de Compostos Orgânicos. 5th ed. Rio de Janeiro: LTC; 1994.

    Google Scholar 

  19. Dias DS, Crespi MS, Torquatro LDM, Kobelnik M, Ribeiro CA. Torrefied banana tree fiber pellets having embedded urea for agricultural use. J Therm Anal Calorim. 2017. https://doi.org/10.1007/s10973-016-6049-7.

    Article  Google Scholar 

  20. Torquatro LDM, Braz CEM, Ribeiro CA, Capela JMV, Crespi MS. Kinetic study of the co-firing of bagasse-sludge blends. J Therm Anal Calorim. 2015;121:499–507.

    Article  Google Scholar 

  21. Almeida S, Bernabé GA, Crespi MS, Ribeiro CA, Lima EN. Relation between kinetic parameters for reactions of organic matter degradation in waste environmental matrix. J Therm Anal Calorim. 2011;105(2):461–5.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thanks Analytical Chemistry Department of Chemistry Institute, UNESP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Almeida.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almeida, S., Crespi, M.S., Nozela, W.C. et al. Food waste: energy source. J Therm Anal Calorim 134, 1367–1373 (2018). https://doi.org/10.1007/s10973-018-7760-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7760-3

Keywords

Navigation