Log in

Aggregation of tetrameric acid in xylene and its interaction with asphaltenes by isothermal titration calorimetry

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper describes the self-association of tetrameric acids (TA) and their interactions with asphaltenes using isothermal titration calorimetry. In order to visualize the importance of molecular structures of TA and asphaltenes, stearic acid (SA) and asphaltene model compounds are used for comparison. Both SA and TA form dimers in xylene solutions. However, the dimerization enthalpy for SA (ΔH) in absolute value is higher than the corresponding value for TA, indicating that the aggregation is less efficient for TA likely due to steric reasons. The interplay between asphaltenes and TA or SA is similar except at low concentrations. Interactions between TA and asphaltene model compounds are strongly dependent on the presence of acid group in model compounds, indicating hydrogen bonds as a central but not only element in the interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Vindstad JE, Bye AS, Grande KV, Hustad BM, Hustvedt E, Nergård B. Fighting naphthenate deposition at the Heidrun field. 2003/1/1/. SPE: Society of Petroleum Engineers. 2003.

  2. Hurtevent C, Ubbels S. Preventing naphthenate stabilised emulsions and naphthenate deposits at ekoundou oil field in cameroon. 2006/1/1/. SPE: Society of Petroleum Engineers. 2006.

  3. Sjöblom J, Simon S, Xu Z. The chemistry of tetrameric acids in petroleum. Adv Colloid Interface Sci. 2014;205:319–38.

    Article  Google Scholar 

  4. Baugh TD, Grande KV, Mediaas H, Vindstad JE, Wolf NO, editors. The discovery of high-molecular-weight naphthenic acids (ARN acid) responsible for calcium naphthenate deposits. SPE Seventh International Symposium on Oilfield Scale 2005: Pushing the Boundaries of Scale Control, Proceedings. 2005.

  5. Lutnaes BF, Brandal O, Sjoblom J, Krane J. Archaeal C80 isoprenoid tetraacids responsible for naphthenate deposition in crude oil processing. Org Biomol Chem. 2006;4(4):616–20.

    Article  CAS  Google Scholar 

  6. Simon S, Nordgård E, Bruheim P, Sjöblom J. Determination of C80 tetra-acid content in calcium naphthenate deposits. J Chromatogr A. 2008;1200(2):136–43.

    Article  CAS  Google Scholar 

  7. Sutton PA, Rowland SJ. Determination of the content of C80 tetraacids in petroleum. Energy Fuels. 2014;. doi:10.1021/ef5012337.

    Google Scholar 

  8. Brandal Ø, Hanneseth AMD, Hemmingsen PV, Sjöblom J, Kim S, Rodgers RP, et al. Isolation and characterization of naphthenic acids from a metal naphthenate deposit: molecular properties at oil-water and air-water interfaces. J Dispers Sci Technol. 2006;27(3):295–305.

    Article  CAS  Google Scholar 

  9. Hanneseth AMD, Selsbak C, Sjöblom J. Behavior and stability of naphthenic acid/naphthenate stabilized emulsions. Mixed C80-tetraacid and stearic acid stabilization. J Dispers Sci Technol. 2010;31(6):770–9.

    Article  CAS  Google Scholar 

  10. Sundman O, Simon S, Nordgård EL, Sjöblom J. Study of the aqueous chemical interactions between a synthetic tetra-acid and divalent Cations as a model for the formation of metal naphthenate deposits. Energy Fuels. 2010;24(11):6054–60.

    Article  CAS  Google Scholar 

  11. Knudsen A, Nordgård EL, Diou O, Sjöblom J. Methods to study naphthenate formation in w/o emulsions by the use of a tetraacid model compound. J Dispers Sci Technol. 2012;33(10):1514–24.

    Article  CAS  Google Scholar 

  12. Ge L, Vernon M, Simon S, Maham Y, Sjöblom J, Xu Z. Interactions of divalent cations with tetrameric acid aggregates in aqueous solutions. Colloid Surf A. 2012;396:238–45.

    Article  CAS  Google Scholar 

  13. Nordgård EL, Magnusson H, Hanneseth AMD, Sjöblom J. Model compounds for C80 isoprenoid tetraacids. Part II. Interfacial reactions, physicochemical properties and comparison with indigenous tetraacids. Colloid Surf A. 2009;340(1–3):99–108.

    Article  Google Scholar 

  14. Brocart B, Bourrel M, Hurtevent C, Volle JL, Escoffier B. ARN-type naphthenic acids in crudes: analytical detection and physical properties. J Dispers Sci Technol. 2007;28(3):331–7.

    Article  CAS  Google Scholar 

  15. Mullins OC. Review of the molecular structure and aggregation of asphaltenes and petroleomics. SPE J. 2008;13(1):48–57.

    Article  CAS  Google Scholar 

  16. Mullins OC, Hammami A, Marshall AG, Sheu EY. Asphaltenes, heavy oils, and petroleomics. New York: Springer; 2007.

    Book  Google Scholar 

  17. Hoepfner MP, Vilas Bôas Fávero C, Haji-Akbari N, Fogler HS. The fractal aggregation of asphaltenes. Langmuir. 2013;29(28):8799–808.

    Article  CAS  Google Scholar 

  18. Hoepfner MP, Fogler HS. Multiscale scattering investigations of asphaltene cluster breakup, nanoaggregate dissociation, and molecular ordering. Langmuir. 2013;29(49):15423–32.

    Article  CAS  Google Scholar 

  19. Spiecker PM, Gawrys KL, Kilpatrick PK. Aggregation and solubility behavior of asphaltenes and their subfractions. J Colloid Interface Sci. 2003;267(1):178–93.

    Article  CAS  Google Scholar 

  20. Mullins OC, Sabbah H, Eyssautier J, Pomerantz AE, Barre L, Andrews AB, et al. Advances in asphaltene science and the Yen–Mullins model. Energy Fuels. 2012;26(7):3986–4003.

    Article  CAS  Google Scholar 

  21. Yarranton HW, Ortiz DP, Barrera DM, Baydak EN, Barré L, Frot D, et al. On the size distribution of self-associated asphaltenes. Energy Fuels. 2013;27(9):5083–106.

    CAS  Google Scholar 

  22. Maqbool T, Srikiratiwong P, Fogler HS. Effect of temperature on the precipitation kinetics of asphaltenes. Energy Fuels. 2011;25(2):694–700.

    Article  CAS  Google Scholar 

  23. Ahmadi Y, Kharrat R, Hashemi A, Bahrami P, Mahdavi S. The effect of temperature and pressure on the reversibility of asphaltene precipitation. Petrol Sci Technol. 2014;32(18):2263–73.

    Article  CAS  Google Scholar 

  24. Frelre E, Mayorga OL, Straume M. Isothermal titration: calorimetry. Anal Chem. 1990;62(18):950A–9A.

    Article  Google Scholar 

  25. Lewis EA, Murphy KP. Isothermal titration calorimetry. Methods Mol Biol (Clifton, NJ). 2005;305:1–16.

    CAS  Google Scholar 

  26. Merino-Garcia D, Andersen SI. Application of isothermal titration calorimetry in the investigation of asphaltene association. In: Mullins O, Sheu E, Hammami A, Marshall A, editors. Asphaltenes, heavy oils, and petroleomics. New York: Springer; 2007. p. 329–52.

    Chapter  Google Scholar 

  27. Nordgård EL, Sjöblom J. Model compounds for asphaltenes and C80 isoprenoid tetraacids. Part I: synthesis and interfacial activities. J Dispers Sci Technol. 2008;29(8):1114–22.

    Article  Google Scholar 

  28. Merino-Garcia D, Andersen SI. Interaction of asphaltenes with nonylphenol by microcalorimetry. Langmuir. 2004;20(4):1473–80.

    Article  CAS  Google Scholar 

  29. Merino-Garcia D, Andersen SI. Thermodynamic characterization of asphaltene-resin interaction by microcalorimetry. Langmuir. 2004;20(11):4559–65.

    Article  CAS  Google Scholar 

  30. Nordgård EL, Simon S, Sjöblom J. Interfacial shear rheology of calcium naphthenate at the oil/water interface and the influence of pH, calcium, and in presence of a model monoacid. J Dispers Sci Technol. 2011;33(7):1083–92.

    Article  Google Scholar 

  31. Holman MW, Liu R, Adams DM. Single-molecule spectroscopy of interfacial electron transfer. J Am Chem Soc. 2003;125(41):12649–54.

    Article  CAS  Google Scholar 

  32. Goodman DS. The distribution of fatty acids between n-heptane and aqueous phosphate buffer. J Am Chem Soc. 1958;80(15):3887–92.

    Article  CAS  Google Scholar 

  33. Suzuki K, Taniguchi Y, Watanabe T. Effect of pressure on the dimerization of carboxylic acids in aqueous solution. J Phys Chem. 1973;77(15):1918–22.

    Article  CAS  Google Scholar 

  34. Atkins P, Paula J. Physical chemistry. 8th ed. Oxford: Oxford University Press; 2006.

    Google Scholar 

  35. Simon S, Knudsen KD, Nordgård E, Reisen C, Sjöblom J. Aggregation of tetrameric acids in aqueous media studied by small-angle neutron scattering. J Colloid Interface Sci. 2013;394:277–83.

    Article  CAS  Google Scholar 

  36. Knudsen KD, Simon S, Qassym L, Gao B, Sjöblom J. Mixed micelles of tetrameric acids and naphthenic acids in water. Energy Fuels. 2014;28(7):4469–79.

    Article  CAS  Google Scholar 

  37. Mullins OC. The modified Yen model. Energy Fuels. 2010;24(4):2179–207.

    Article  CAS  Google Scholar 

  38. Peng J, Tang GQ, Kovscek AR. Oil chemistry and its impact on heavy oil solution gas drive. J Petrol Sci Eng. 2009;66(1–2):47–59.

    Article  CAS  Google Scholar 

  39. Hosseinpour N, Khodadadi AA, Bahramian A, Mortazavi Y. Asphaltene adsorption onto acidic/basic metal oxide nanoparticles toward in situ upgrading of reservoir oils by nanotechnology. Langmuir. 2013;29(46):14135–46.

    Article  CAS  Google Scholar 

  40. Wei D, Orlandi E, Simon S, Sjoblom J, Suurkuusk M. Interactions between asphaltenes and alkylbenzene-derived inhibitors investigated by isothermal titration calorimetry. J Therm Anal Calorim. 2015;. doi:10.1007/s10973-015-4542-z.

    Google Scholar 

  41. Rogel E. Effect of inhibitors on asphaltene aggregation: a theoretical framework. Energy Fuels. 2011;25:472–81.

    Article  CAS  Google Scholar 

  42. Merino-Garcia D, Murgich J, Andersen SI. Asphaltene self-association: modeling and effect of fractionation with a polar solvent. Petrol Sci Technol. 2004;22(7–8):735–58.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the JIP-2 consortium “Prediction of Ca-naphthenate deposition in water–oil systems”, consisting of Champion Technologies, Clariant Oil Services, ConocoPhillips, ENI, Petrobras, R.E.P, Shell Global Solutions, Statoil ASA, Talisman Energy and Total, for financial support of the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duo Wei.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 815 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, D., Orlandi, E., Barriet, M. et al. Aggregation of tetrameric acid in xylene and its interaction with asphaltenes by isothermal titration calorimetry. J Therm Anal Calorim 122, 463–471 (2015). https://doi.org/10.1007/s10973-015-4765-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4765-z

Keywords

Navigation