Log in

Interactions between asphaltenes and alkylbenzene-derived inhibitors investigated by isothermal titration calorimetry

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Isothermal titration calorimetry (ITC) was applied to study the interactions between asphaltenes (Asp) and model asphaltene precipitation inhibitors: nonylphenol (NP) and dodecyl benzene sulfonic acid (DBSA). The level of self-aggregation of these inhibitors has been determined to start with. According to the curve fitting results based on a dimer model, monomers of NP were found to be predominant within the whole concentration range studied. More complex patterns of self-aggregation of DBSA were observed depending on aging time and concentration. Novel interaction models were applied to extract thermodynamic properties about the interaction between NP and asphaltenes. Complexes of (Asp)(NP)1 and (Asp)(NP)2 are mainly formed. For the interactions between DBSA and asphaltenes, it was shown that the main mechanism depends on the self-aggregation of DBSA as well as the concentration of asphaltenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Strausz OP, Safarik I, Lown EM, Morales-Izquierdo A. A critique of asphaltene fluorescence decay and depolarization-based claims about molecular weight and molecular architecture. Energy Fuels. 2008;22(2):1156–66.

    Article  CAS  Google Scholar 

  2. Mullins OC, Sabbah H, Eyssautier J, Pomerantz AE, Barre L, Andrews AB, et al. Advances in asphaltene science and the Yen-Mullins model. Energy Fuels. 2012;26(7):3986–4003.

    Article  CAS  Google Scholar 

  3. Spiecker PM, Gawrys KL, Kilpatrick PK. Aggregation and solubility behavior of asphaltenes and their subfractions. J Colloid Interface Sci. 2003;267(1):178–93.

    Article  CAS  Google Scholar 

  4. Mullins OC, Hammami A, Marshall AG, Sheu EY. Asphaltenes, heavy oils, and petroleomics. New York: Springer; 2007.

    Book  Google Scholar 

  5. Yarranton HW, Ortiz DP, Barrera DM, Baydak EN, Barré L, Frot D, et al. On the size distribution of self-associated asphaltenes. Energy Fuels. 2013;27(9):5083–106.

    CAS  Google Scholar 

  6. Hoepfner MP, Fogler HS. Multiscale scattering investigations of asphaltene cluster breakup, nanoaggregate dissociation, and molecular ordering. Langmuir. 2013;29(49):15423–32.

    Article  CAS  Google Scholar 

  7. Sheu EY, De Tar MM, Storm DA, DeCanio SJ. Aggregation and kinetics of asphaltenes in organic solvents. Fuel. 1992;71(3):299–302.

    Article  CAS  Google Scholar 

  8. Yudin IK, Nikolaenko GL, Gorodetskii EE, Markhashov EL, Agayan VA, Anisimov MA, et al. Crossover kinetics of asphaltene aggregation in hydrocarbon solutions. Phys A. 1998;251(1–2):235–44.

  9. Savvidis TG, Fenistein D, Barré L, Béhar E. Aggregated structure of flocculated asphaltenes. AIChE J. 2001;47(1):206–11.

    Article  CAS  Google Scholar 

  10. Al-Sahhaf TA, Fahim MA, Elkilani AS. Retardation of asphaltene precipitation by addition of toluene, resins, deasphalted oil and surfactants. Fluid Phase Equilib. 2002;194–197:1045–57.

    Article  Google Scholar 

  11. Porte G, Zhou H, Lazzeri V. Reversible description of asphaltene colloidal association and precipitation. Langmuir. 2002;19(1):40–7.

    Article  Google Scholar 

  12. Verdier S, Plantier F, Bessières D, Andersen SI, Stenby EH, Carrier H. Study of asphaltene precipitation by calorimetry. Energy Fuels. 2007;21(6):3583–7.

    Article  CAS  Google Scholar 

  13. Mansur CRE, Guimaraes ARS, Gonzalez G, Lucas EF. Determination of the onset of asphaltene precipitation by visible ultraviolet spectrometry and spectrofluorimetry. Anal Lett. 2009;42(16):2648–64.

    Article  CAS  Google Scholar 

  14. Safieva JO, Likhatsky VV, Filatov VM, Syunyaev RZ. Composition of asphaltene solvate shell at precipitation onset conditions and estimation of average aggregate sizes in model oils. Energy Fuels. 2010;24:2266–74.

    Article  CAS  Google Scholar 

  15. Barrera DM, Ortiz DP, Yarranton HW. Molecular weight and density distributions of asphaltenes from crude oils. Energy Fuels. 2013;27(5):2474–87.

    Article  CAS  Google Scholar 

  16. Chang CL, Fogler HS. Stabilization of asphaltenes in aliphatic solvents using alkylbenzene-derived amphiphiles. 1. Effect of the chemical structure of amphiphiles on asphaltene stabilization. Langmuir. 1994;10(6):1749–57.

    Article  CAS  Google Scholar 

  17. Chang CL, Fogler HS. Stabilization of asphaltenes in aliphatic solvents using alkylbenzene-derived amphiphiles. 2. Study of the asphaltene-amphiphile interactions and structures using fourier transform infrared spectroscopy and small-angle X-ray scattering techniques. Langmuir. 1994;10(6):1758–66.

    Article  CAS  Google Scholar 

  18. Permsukarome P, Chang C, Fogler HS. Kinetic study of asphaltene dissolution in amphiphile/alkane solutions. Ind Eng Chem Res. 1997;36(9):3960–7.

    Article  CAS  Google Scholar 

  19. Rogel E, Leon O. Study of the adsorption of alkyl-benzene-derived amphiphiles on an asphaltene surface using molecular dynamics simulations. Energy Fuels. 2001;15(5):1077–86.

    Article  CAS  Google Scholar 

  20. Hu YF, Guo TM. Effect of the structures of ionic liquids and alkylbenzene-derived amphiphiles on the inhibition of asphaltene precipitation from CO2-injected reservoir oils. Langmuir. 2005;21(18):8168–74.

    Article  CAS  Google Scholar 

  21. Hashmi SM, Firoozabadi A. Effect of dispersant on asphaltene suspension dynamics: aggregation and sedimentation. J Phys Chem B. 2010;114(48):15780–8.

    Article  CAS  Google Scholar 

  22. Rogel E. Effect of inhibitors on asphaltene aggregation: a theoretical framework. Energy Fuels. 2011;25:472–81.

    Article  CAS  Google Scholar 

  23. Hashmi SM, Firoozabadi A. Tuning size and electrostatics in non-polar colloidal asphaltene suspensions by polymeric adsorption. Soft Matter. 2011;7(18):8384–91.

    Article  CAS  Google Scholar 

  24. Goual L, Sedghi M, Wang X, Zhu Z. Asphaltene aggregation and impact of alkylphenols. Langmuir. 2014;30(19):5394–403.

  25. Ibrahim HH, Idem RO. Interrelationships between asphaltene precipitation inhibitor effectiveness, asphaltenes characteristics, and precipitation behavior during n-heptane (light paraffin hydrocarbon)-induced asphaltene precipitation. Energy Fuels. 2004;18(4):1038–48.

    Article  CAS  Google Scholar 

  26. Wang J, Li C, Zhang L, Que G, Li Z. The properties of asphaltenes and their interaction with amphiphiles. Energy Fuels. 2009;23(7):3625–31.

    Article  CAS  Google Scholar 

  27. Hashmi SM, Zhong KX, Firoozabadi A. Acid-base chemistry enables reversible colloid-to-solution transition of asphaltenes in non-polar systems. Soft Matter. 2012;8(33):8778–85.

    Article  CAS  Google Scholar 

  28. León O, Rogel E, Urbina A, Andújar A, Lucas A. Study of the adsorption of alkyl benzene-derived amphiphiles on asphaltene particles. Langmuir. 1999;15(22):7653–7.

    Article  Google Scholar 

  29. Andersen SI, Speight JG. Observations on the critical micelle concentration of asphaltenes. Fuel. 1993;72(9):1343–4.

    Article  CAS  Google Scholar 

  30. Andersen SI, Christensen SD. The critical micelle concentration of asphaltenes as measured by calorimetry. Energy Fuels. 2000;14(1):38–42.

    Article  CAS  Google Scholar 

  31. Andersen SI, del Rio JM, Khvostitchenko D, Shakir S, Lira-Galeana C. Interaction and solubilization of water by petroleum asphaltenes in organic solution. Langmuir. 2001;17(2):307–13.

    Article  CAS  Google Scholar 

  32. Merino-Garcia D, Murgich J, Andersen SI. Asphaltene self-association: modeling and effect of fractionation with a polar solvent. Petrol Sci Technol. 2004;22(7–8):735–58.

    Article  CAS  Google Scholar 

  33. Merino-Garcia D, Andersen SI. Application of isothermal titration calorimetry in the investigation of asphaltene association. In: Mullins O, Sheu E, Hammami A, Marshall A, editors. Asphaltenes, heavy oils, and petroleomics. New York: Springer; 2007. p. 329–52.

    Chapter  Google Scholar 

  34. Merino-Garcia D, Andersen SI. Thermodynamic characterization of asphaltene–resin interaction by microcalorimetry. Langmuir. 2004;20(11):4559–65.

    Article  CAS  Google Scholar 

  35. Zeiss D, Bauer-Brandl A. Isothermal titration calorimetry (ITC) method to study drug/ion exchanger interaction. J Therm Anal Calorim. 2006;83(2):309–12.

    Article  CAS  Google Scholar 

  36. Bhowmik D, Buzzetti F, Fiorillo G, Franchini L, Syeda T, Lombardi P, et al. Calorimetry and thermal analysis studies on the binding of 13-phenylalkyl and 13-diphenylalkyl berberine analogs to tRNAphe. J Therm Anal Calorim. 2014;118(1):461–73.

    Article  CAS  Google Scholar 

  37. Ge L, Guo R, Zhang X. Formation and microstructure transition of F127/TX-100 complex. J Phys Chem B. 2008;112(46):14566–77.

    Article  CAS  Google Scholar 

  38. Wei D, Ge L, Guo R. Binding characteristics between poly(ethylene glycol) and hydrophilic modified ibuprofen in aqueous solution. J Phys Chem B. 2010;114(10):3472–81.

    Article  CAS  Google Scholar 

  39. Ge L, Wang Q, Wei D, Zhang X, Guo R. Aggregation of double-tailed ionic liquid 1,3-dioctylimidazolium bromide and the interaction with triblock copolymer F127. J Phys Chem B. 2013;117(48):15014–22.

    CAS  Google Scholar 

  40. Murgich J, Merino-Garcia D, Andersen SI, Manuel del Río J, Galeana CL. Molecular mechanics and microcalorimetric investigations of the effects of molecular water on the aggregation of asphaltenes in solutions. Langmuir. 2002;18(23):9080–6.

    Article  CAS  Google Scholar 

  41. Simon S, Nenningsland AL, Herschbach E, Sjoblom J. Extraction of basic components from petroleum crude oil. Energy Fuels. 2010;24:1043–50.

    Article  CAS  Google Scholar 

  42. Mullins OC. The modified Yen model. Energy Fuels. 2010;24(4):2179–207.

    Article  CAS  Google Scholar 

  43. Orlandi E. Study of aggregation of tetrameric acid and its interaction with crude oil asphaltenes by isothermal titration calorimetry [Master Thesis]. Trondheim: Norwegian University of Science and Technology; 2013.

    Google Scholar 

  44. Merino-Garcia D, Andersen SI. Isothermal titration calorimetry and fluorescence spectroscopy study of asphaltene self-association in toluene and interaction with a model resin. Petrol Sci Technol. 2003;21(3–4):507–25.

    Article  CAS  Google Scholar 

  45. Merino-Garcia D, Andersen SI. Calorimetric evidence about the application of the concept of CMC to asphaltene self-association. J Disper Sci Technol. 2005;26(2):217–25.

    Article  CAS  Google Scholar 

  46. Hashmi SM, Firoozabadi A. Field- and concentration-dependence of electrostatics in non-polar colloidal asphaltene suspensions. Soft Matter. 2012;8(6):1878–83.

    Article  CAS  Google Scholar 

  47. Petrenko VI, Avdeev MV, Garamus VM, Bulavin LA, Aksenov VL, Rosta L. Micelle formation in aqueous solutions of dodecylbenzene sulfonic acid studied by small-angle neutron scattering. Colloid Surf A. 2010;369(1–3):160–4.

    Article  CAS  Google Scholar 

  48. Merino-Garcia D, Andersen SI. Interaction of asphaltenes with nonylphenol by microcalorimetry. Langmuir. 2004;20(4):1473–80.

    Article  CAS  Google Scholar 

  49. Che Y, Datar A, Balakrishnan K, Zang L. Ultralong nanobelts self-assembled from an asymmetric perylene tetracarboxylic diimide. J Am Chem Soc. 2007;129(23):7234–5.

    Article  CAS  Google Scholar 

  50. Juyal P, Merino-Garcia D, Andersen SI. Effect on molecular interactions of chemical alteration of petroleum asphaltenes. Energy Fuels. 2005;19(4):1272–81.

    Article  CAS  Google Scholar 

  51. Goual L, Firoozabadi A. Effect of resins and DBSA on asphaltene precipitation from petroleum fluids. AIChE J. 2004;50(2):470–9.

    Article  CAS  Google Scholar 

  52. Hashmi SM, Firoozabadi A. Self-assembly of resins and asphaltenes facilitates asphaltene dissolution by an organic acid. J Colloid Interface Sci. 2013;394:115–23.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support for this work from the Research Council of Norway (NFR) and the industrial consortium JIP-1 (Increased Energy Savings in Water–Oil Separation Through Advanced Fundamental Emulsion Paradigms (NFR PETROMAKS) 2011–2013) consisting of AkzoNobel, BP, Champion Technologies, Hamworthy, ENI, Kemira, Saudi Aramco, Statoil, Shell, Total.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duo Wei.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 213 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, D., Orlandi, E., Simon, S. et al. Interactions between asphaltenes and alkylbenzene-derived inhibitors investigated by isothermal titration calorimetry. J Therm Anal Calorim 120, 1835–1846 (2015). https://doi.org/10.1007/s10973-015-4542-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4542-z

Keywords

Navigation