Log in

Structure, Ferromagnetic, Dielectric and Electronic Features of the \(\hbox {LaBiFe}_{2}\hbox {O}_{6}\) Material

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In this paper, the synthesis and study of the structural, morphological, electrical, magnetic and electronic properties of the \(\hbox {LaBiFe}_{2}\hbox {O}_{6}\) novel material are reported. The material was produced using the standard ceramic method. The Rietveld analysis of experimental data of X-ray diffraction showed that it synthesizes in an orthorhombic perovskite structure (Pnma space group, # 62). Two types of grain, micro and sub-micrometric, with the \(\hbox {LaBiFe}_{2}\hbox {O}_{6}\) stoichiometry were identified by scanning electron microscopy and X-ray dispersive spectroscopy. Results of electrical polarization and dielectric constant reveal the occurrence of hysteretic loops of polarization with evidences of dielectric loss. At room temperature, the material is ferromagnetic and exhibits an anomaly at T = 258 K, which is attributed to anisotropy effects. Results of diffuse reflectance suggest a semiconductor feature with energy gap \(E_{g}=2.17\) eV, which is in agreement with calculations of band structure and density of states for one spin orientation, while for the other spin configuration from the calculations a conductor behavior is expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M.A. Loi, J.C. Hummelen, Nature Mater. 12, 1087 (2013)

    ADS  Google Scholar 

  2. S. Keav, S.K. Matam, D. Ferri, A. Weidenkaff, Catalysts 4, 226 (2014)

    Article  Google Scholar 

  3. N.A. Spaldin, Magnetic Materials Fundamentals and Applications, 2nd edn. (Cambridge University Press, Cambridge, 2010)

    Book  Google Scholar 

  4. C. Chappert, A. Fert, F. van Dau, Nature Mater. 6, 813 (2007)

    Article  ADS  Google Scholar 

  5. K.Z. Rushchanskii, S. Kamba, V. Goian, P. Vaněk, M. Savinov, J. Prokleška, D. Nuzhnyy, K. Knížek, F. Laufek, S. Eckel, S.K. Lamoreaux, A.O. Sushkov, M. Ležaić, N.A. Spaldin, Nature Mater. 9, 649 (2010)

    Article  ADS  Google Scholar 

  6. K. Uchino, Ferroelectric Devices, 2nd edn. (CRC Press (Taylor & Francis Group), Boca Raton, 2009)

    Book  Google Scholar 

  7. M. Akaki, T. Tadokoro, T. Kihara, M. Tokunaga, H. Kuwahara, J. Low Temp. Phys. 170, 291 (2013)

    Article  ADS  Google Scholar 

  8. L. Sha, J. Miao, S.Z. Wu, X.G. Xu, Y. Jiang, L.J. Qiao, J. Alloys Compd. 554, 299 (2013)

    Article  ADS  Google Scholar 

  9. T.H.D. Lahtinen, K.J.A. Franke, s. van Dijken, Sci. Rep. 2, 258 (2012)

  10. C.A. Triana, D.A. Landínez, J. Arbey Rodríguez, F. Fajardo, J. Roa-Rojas, Mater. Lett 82, 116 (2012)

    Article  Google Scholar 

  11. S. Acharya, J. Mondal, S. Ghosh, S.K. Roy, P.K. Chakrabarti, Mater. Lett. 64, 415 (2010)

    Article  Google Scholar 

  12. S.A. Ivanov, R. Tellgren, F. Porcher, T. Ericsson, A. Mosunov, P. Beran, S.K. Korchagina, P. Anil Kumar, R. Mathieu, P. Nordblad, Mater. Res. Bull. 47, 3253 (2012)

    Article  Google Scholar 

  13. J. Liu, C.G. Duan, W.G. Yin, W.N. Mei, R.W. Smith, J.R. Hardy, Phys. Rev. B 70, 144106 (2004)

    Article  ADS  Google Scholar 

  14. M. Arora, P.C. Sati, S. Chauhan, S. Chhoker, A.K. Panwar, M. Kumar, J. Supercond. Novel Magn. 26, 443 (2013)

    Article  Google Scholar 

  15. W. Kaczmarek, Z. Pajak, Solid State Commun. 17, 807 (1975)

    Article  ADS  Google Scholar 

  16. J. Bucci, B.K. Robertson, J. James, J. Appl. Crys. 5, 187 (1972)

    Article  Google Scholar 

  17. M.G. Ranieri, R.A.C. Amoresi, M.A. Ramirez, J.A. Cortes, L.S.R. Rocha, C.C. Silva, A.Z. Simões, J. Mater. Sci. Mater. Electron. 27, 9325 (2016)

    Article  Google Scholar 

  18. R.A.M. Gotardo, L.F. Cótica, I.A. Santos, M. Olzon-Dyonisio, S.D. Souza, D. Garcia, J.A. Eiras, A.A. Coelho, Appl. Phys. A 111, 111 (2013)

    Article  Google Scholar 

  19. M.A. Ahmed, A.A. Azab, E.H. El-Khawas, J. Mater. Sci. Mater. Electron 26, 8765 (2015)

    Article  Google Scholar 

  20. C.A. Triana, D.A. Landínez Téllez, J. Roa-Rojas, Mater. Charact. 99, 128 (2015)

    Article  Google Scholar 

  21. H.T. Stokes, E.H. Kisi, D.M. Hatch, C.J. Howard, Acta Cryst. B58, 934 (2002)

    Article  Google Scholar 

  22. B.H. Toby, J. Appl. Cryst. 34, 210 (2001)

    Article  Google Scholar 

  23. D.J. Sing, Plane Waves Pseudo-potentials and the LAPW Method (Kluwer, Dordrecht, 1994)

    Book  Google Scholar 

  24. P. Blaha, K. Schwarz, J. Luitz, WIEN97 A Full Potential Linearized Augmented Plane Wave Package for Calculating Crystal Properties (Tch. Universität Wien, Austria, Katherine Schwarz, 1999)

  25. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  26. ICSD PDF code 00-036-1481

  27. ICSD PDF code 01-071-0465

  28. ICSD PDF code 01-088-0315

  29. M.C. Knapp, P.M. Woodward, J. Sol. Stat. Chem. 179, 1076 (2006)

    Article  ADS  Google Scholar 

  30. K.L. Holman, Q. Huang, T. Klimczuk, K. Trzebiatowski, J.W.G. Bos, E. Morosan, J.W. Lynn, R.J. Cava, J. Sol. Stat. Chem. 180, 75 (2007)

    Article  ADS  Google Scholar 

  31. P.M. Woodward, Acta Cryst. B53, 44 (1997)

    Article  Google Scholar 

  32. C.A. Triana, D.A. Landínez Téllez, J. Roa-Rojas, J. Alloys. Compd 516, 179 (2012)

    Article  Google Scholar 

  33. M. Lines, A.M. Glass, Principles and Applications of Ferroelectrics and Related Materials. Oxford Classic Texts in The Physical Sciences (2004)

  34. R.P.M.S. Lobo, R.L. Moreira, D. Lebeugle, D. Colson, Phys. Ver. B76, 172105 (2007)

    ADS  Google Scholar 

  35. M. Idrees, M. Nadeem, M. Atif, M. Siddique, M. Mehmood, M.M. Hassan, Acta Mater. 59, 1338 (2011)

    Article  Google Scholar 

  36. J. Singh, Physics of Semiconductors and Their Heterostructures (Mcgraw Hill Series in Electrical and Computer Engineering, New York, 1993)

  37. Y. Aoki, K. Fujimoto, M. Tsubota, J. Low Temp. Phys. 175, 216 (2014)

    Article  ADS  Google Scholar 

  38. M. Manikandan, K. Saravana Kumar, N. Aparnadevi, C. Venkateswaran, Phys. Stat. Sol A 212, 2179 (2015)

    Article  Google Scholar 

  39. M. Sorescu, T. Xu, A. Hannan, Am. J. Mater. Sci. 1, 57 (2011)

    Google Scholar 

  40. P. Kubelka, F. Munk, Z. Tech, Phys. 12, 593 (1931)

    Google Scholar 

  41. V. Kumar, S. Kr. Sharma, T.P. Sharma, V. Singh, Opt. Mater 12, 115 (1999)

    Article  ADS  Google Scholar 

  42. M.D. Scafetta, A.M. Cordi, J.M. Randinelli, S.J. May, J. Phys. Condens. Matter 26, 505502 (2014)

    Article  Google Scholar 

  43. J.F. Ihlefeld, N.J. Podraza, Z.K. Liu, R.C. Rai, X. Xu, T. Heeg, Y.B. Chen, J. Li, R.W. Collins, J.L. Musfeldt, X.Q. Pan, J. Schubert, R. Ramesh, D.G. Schlom, Appl. Phys. Lett. 92, 142908 (2008)

    Article  ADS  Google Scholar 

  44. F.D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1944)

  45. M.S. Augsburger, M.C. Viola, J.C. Pedregosa, R.E. Carbonio, J.A. Alonso, J. Mater. Chem. 16, 4235 (2006)

    Article  Google Scholar 

  46. J.B. Goodenough, J. Appl. Phys. 37, 1415 (1966)

    Article  ADS  Google Scholar 

  47. L. Sánchez, J.R. Jurado, Bol. Soc. Esp. Cerám. Vidrio 40, 253 (2001)

    Article  Google Scholar 

  48. F. Sacchetti, J. Phys. F Met. Phys. 12, 281 (1982)

    Article  ADS  Google Scholar 

  49. J. Sun, R.C. Remsing, Y. Zhang, Z. Sun, A. Ruzsinszky, H. Peng, Z. Yang, A. Paul, U. Waghmare, X. Wu, M.L. Klein, J.P. Perdew, Nature Chem. (2016). doi:10.1038/nchem.2535

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by Division of Investigations (DIB) of the National University of Colombia. One of us (J.A. Cuervo Farfán) received support by Departamento Administrativo de Ciencia y Tecnología “Francisco José de Caldas”, COLCIENCIAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Roa-Rojas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuervo Farfán, J.A., Aljure García, D.M., Cardona, R. et al. Structure, Ferromagnetic, Dielectric and Electronic Features of the \(\hbox {LaBiFe}_{2}\hbox {O}_{6}\) Material. J Low Temp Phys 186, 295–315 (2017). https://doi.org/10.1007/s10909-016-1714-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-016-1714-6

Keywords

Navigation