Log in

Structural, magnetic and electrical properties of Bi doped LaFeO3 nano-crystals, synthesized by auto-combustion method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

La1−xBixFeO3; 0 ≤ x ≤ 0.2 have been prepared by citrate auto-combustion method. The results of X-ray diffraction showed that LaFeO3 has single phase with orthorhombic structure. With increasing Bi content, traces of secondary phase of rhombohedral structure are observed. The transmission electron microscope showed that the prepared compositions have nanocrystalline structure with an increase of the particle size increases with increasing Bi content. The magnetic properties of the samples were investigated by vibrating sample magnetometer, in which saturation magnetization (Ms) and coercivity (Hc) were determined. The value of Ms increases with increasing Bi content up to x = 0.10, while Hc decreases with increasing Bi content. The temperature dependence of dielectric constant, dielectric loss and ac conductivity at different frequencies (100 kHz–5 MHz) were studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Phokhaa, S. Hunpratupb, S. Pinitsoontornb, B. Putasaengc, S. Rujirawata, S. Maensiri, Mater. Res. Bull. 67, 118–125 (2015)

    Article  Google Scholar 

  2. Irshad Bhat, Shahid Husain, Wasi Khan, S.I. Patil. Mater. Res. Bull. 48, 4506–4512 (2013)

    Article  Google Scholar 

  3. A. Benali, S. Azizi, M. Bejar, E. Dhahri, M.F.P. Graça, Ceram. Int. 40, 14367–14373 (2014)

    Article  Google Scholar 

  4. M.B. Bellakki, C. Madhu, T. Greindl, S. Kohli, P. McCurdy, V. Manivannan, Rare Met. 29, 491–500 (2010)

    Article  Google Scholar 

  5. D. Hammer, J. Wu, C. Leighton, Phys. Rev. B 69, 134407–134411 (2004)

    Article  Google Scholar 

  6. E. Traversa, S. Matsushima, G. Okada, Y. Sadaoka, Y. Sakai, K. Watanabe, Sens. Actuators B 25, 661–664 (1995)

    Article  Google Scholar 

  7. M.A. Pena, J.L.G. Fierro, Chem. Rev. 101, 1981–2017 (2001)

    Article  Google Scholar 

  8. J.M. Liu, Q.C. Li, X.S. Gao, Y. Yang, X.H. Zhou, X.Y. Chen et al., Phys. Rev. B 66, 054416–054427 (2002)

    Article  Google Scholar 

  9. N.A. Hill, J. Phys, Chem. B 104, 6694–6709 (2000)

    Article  Google Scholar 

  10. M. Cherry, M.S. Islam, C.R.A. Catlow, J. Solid State Chem. 118, 125–132 (1995)

    Article  Google Scholar 

  11. S. Geller, P.M. Raccah, Phys. Rev. B 2, 1167–1172 (1970)

    Article  Google Scholar 

  12. S.R. Das, R.N.P. Choudhary, P. Bhattacharya, R.S. Katiyar, P. Dutta, A. Manivannan, M.S. Seehra, J. Appl. Phys. 101, 034104 (2007)

    Article  Google Scholar 

  13. S.T. Zhang, Y. Zhang, M.H. Lu, C.L. Du, Y.F. Chen, Z.G. Liu, Y.Y. Zhu, N.B. Ming, Appl. Phys. Lett. 88, 162901 (2006)

    Article  Google Scholar 

  14. L.T. Sagdahl, M.A. Einarsrud, T. Grande, J. Am. Ceram. Soc. 83, 2318 (2000)

    Article  Google Scholar 

  15. X.P. Dai, Q. Wu, R.J. Li, C.C. Yu, Z.P. Hao, J. Phys. Chem. B 110, 25856–25862 (2006)

    Article  Google Scholar 

  16. S. Nakayama, J. Mater. Sci. 36, 5643–5648 (2001)

    Article  Google Scholar 

  17. X.W. Qi, J. Zhou, Z.X. Yue, Z.L. Gui, Ceram. Int. 29, 347–349 (2003)

    Article  Google Scholar 

  18. W.J. Zheng, R.H. Liu, D.K. Peng, G.Y. Meng, Mater. Lett. 43(1), 19–22 (2000)

    Article  Google Scholar 

  19. M. Sivakumar, A. Gedanken, W. Zhong, Y.H. Jiang, Y.W. Du, I. Brukental, J. Mater. Chem. 14, 764–769 (2004)

    Article  Google Scholar 

  20. M.A. Ahmed, H.H. Afify, I.K. El Zawawi, A.A. Azab, J. Magn. Magn. Mater. 324, 2199–2204 (2012)

    Article  Google Scholar 

  21. A. Azab, E.H. El-Khawas, J. Appl. Sci. Res. 9(3), 1683–1689 (2013)

    Google Scholar 

  22. R.D. Shannon, Acta Crystallogr. A A32, 751–767 (1976)

    Article  Google Scholar 

  23. V.A. Khomchenko et al., J. Appl. Phys. 108, 074109 (2010)

    Article  Google Scholar 

  24. J.C. Yang et al., Phys. Rev. Lett. 109, 247606 (2012)

    Article  Google Scholar 

  25. C.F. Tseng, T.C. Wei, S.C. Lu, Ceram. Int. 40, 7081–7085 (2014)

    Article  Google Scholar 

  26. K. Ramam, K. Chandramouli, Ceram. Int. 37, 979–984 (2011)

    Article  Google Scholar 

  27. R.L. Cook, A.F. Sammells, Solid State Ion. 45, 311–321 (1991)

    Article  Google Scholar 

  28. F.Z. Qian, J.S. Jiang, S.Z. Guo, D.M. Jiang, W.G. Zhang, J. Appl. Phys. 106, 084312 (2009)

    Article  Google Scholar 

  29. Jun Wang, William B. White, James H. Adair, J. Phys. Chem. B 110, 4679 (2006)

    Article  Google Scholar 

  30. Thomas T. Morgan, Trevor M. Goff, James H. Adair, Nanoscale 3, 2044–2053 (2011)

    Article  Google Scholar 

  31. S.A. Ivanov, R. Tellgren, F. Porcher etn al. Mater. Res. Bull. 47, 3253–3268 (2012)

    Article  Google Scholar 

  32. R. Pushpa, D. Daniel, D.P. Butt, Solid State Ion. 249–250, 184–190 (2013)

    Article  Google Scholar 

  33. K. Mukhopadhyay, A.S. Mahapatra, P.K. Chakrabarti, J. Magn. Magn. Mater. 329, 133–141 (2013)

    Article  Google Scholar 

  34. A.A. Azab, N. Helmy, S. Albaaj, Mater. Res. Bull. 66, 249–253 (2015)

    Article  Google Scholar 

  35. X.W. Qi, J. Zhou, Z.X. Yue, Mater. Chem. Phys. 78(1), 25–29 (2003)

    Article  Google Scholar 

  36. H. Shen, G.F. Cheng, A.H. Wu, Phys. Status Solidi A 206(7), 1420–1424 (2009)

    Article  Google Scholar 

  37. P. Shikha, T.S. Kang, B.S. Randhawa, J. Alloys Compd. 625, 336–345 (2015)

    Article  Google Scholar 

  38. D. Wang, M. Gong, J. Appl. Phys. 109, 114304 (2011)

    Article  Google Scholar 

  39. H. Ahmadvand, H. Salamati, P. Kameli, A. Poddar, M. Acet, K. Zakeri, J. Phys. D Appl. Phys. 43, 245002 (2010)

    Article  Google Scholar 

  40. R.H. Kodama, S.A. Makhlouf, A.E. Berkowitz, Phys. Rev. Lett. 79, 1393–1396 (1997)

    Article  Google Scholar 

  41. P. Rovillain, R. de Sousa, Y. Gallais, A. Sacuto, M.A. Méasson, D. Colson, A. Forget, M. Bibes, A. Barthélémy, M. Cazayous, Nat. Mater. 9, 975 (2010)

    Article  Google Scholar 

  42. D.I. Khomskii, J. Magn. Magn. Mater. 306, 1–6 (2006)

    Article  Google Scholar 

  43. P. Lunkenheimer, V. Bobnar, A.V. Pronin, A.I. Ritus, A.A. Volkov, A. Loidl, Phys. Rev. B 66, 052105 (2002)

    Article  Google Scholar 

  44. J. Liu, C.G. Duan, W.G. Yin, W.N. Mei, R.W. Smith, J.R. Hardy, Phys. Rev. B 70, 144106 (2004)

    Article  Google Scholar 

  45. N. Rezlescu, E. Rezlescu, Solid State Commun. 14, 69–72 (1974)

    Article  Google Scholar 

  46. K. Iwauchi, Jpn. J. Appl. Phys. 10, 1520–1528 (1971)

    Article  Google Scholar 

  47. N. Nanba, J. Appl. Phys. 53, 695–698 (1982)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Azab.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, M.A., Azab, A.A. & El-Khawas, E.H. Structural, magnetic and electrical properties of Bi doped LaFeO3 nano-crystals, synthesized by auto-combustion method. J Mater Sci: Mater Electron 26, 8765–8773 (2015). https://doi.org/10.1007/s10854-015-3556-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3556-4

Keywords

Navigation